1
|
Wu T, Yan D, Hou W, Jiang H, Wu M, Wang Y, Chen G, Tang C, Wang Y, Xu H. Biomimetic Red Blood Cell Membrane-Mediated Nanodrugs Loading Ursolic Acid for Targeting NSCLC Therapy. Cancers (Basel) 2022; 14:cancers14184520. [PMID: 36139680 PMCID: PMC9496832 DOI: 10.3390/cancers14184520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the second most common cancer after breast cancer. Non-small-cell lung cancer, which represents more than 85% of all lung cancer subtypes, is known for its tumor progression and metastasis, resulting in poor clinical outcomes. Conventional therapies for NSCLC, such as surgery, chemotherapy, and radiotherapy, always fail due to therapeutic resistance. In recent years, ursolic acid (UA), a natural pentacyclic triterpenoid compound, has been shown to be a promising antitumor drug by regulating multiple signaling pathways in cancers. Unfortunately, the poor water solubility, low bioavailability, and systemic toxicity of UA limit its clinical application. In this study, a biomimetic red blood cell membrane nanocarrier was developed to deliver UA to targeted tumor sites efficiently, and it inhibited tumor growth by inducing the apoptosis and autophagy of cancer cells both in vitro and in vivo. Abstract As one of the most common cancers worldwide, non-small-cell lung cancer (NSCLC) treatment always fails owing to the tumor microenvironment and resistance. UA, a traditional Chinese medicine, was reported to have antitumor potential in tumor models in vitro and in vivo, but showed impressive results in its potential application for poor water solubility. In this study, a novel biomimetic drug-delivery system based on UA-loaded nanoparticles (UaNPs) with a red blood cell membrane (RBCM) coating was developed. The RBCM-coated UANPs (UMNPs) exhibited improved water solubility, high stability, good biosafety, and efficient tumor accumulation. Importantly, the excellent antitumor efficiency of the UMNPs was confirmed both in vitro and in vivo in cancer models. In addition, we further investigated the antitumor mechanism of UMNPs. The results of Western blotting showed that UMNPs exerted an anticancer effect by inducing the apoptosis and autophagy of NSCLC cells, which makes it superior to free UA. In addition, body weight monitoring, hematoxylin and eosin (HE) analysis, and immunohistochemical (IHC) analysis showed no significant difference between UMNPs and the control group, indicating the safety of UMNPs. Altogether, the preparation of biomimetic UMNPs provides a promising strategy to improve outcomes in NSCLC.
Collapse
Affiliation(s)
- Ting Wu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Dan Yan
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Wenjun Hou
- Department of Dermatology, Drum Tower Hospital of Medical School, Nanjing University, Nanjing 211116, China
| | - Hui Jiang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Gang Chen
- Department of Gastrointestinal Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Yijun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
- Correspondence: (Y.W.); (H.X.)
| | - Huae Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
- Correspondence: (Y.W.); (H.X.)
| |
Collapse
|
2
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
3
|
Mercel AI, Marulanda K, Gillis DC, Sun K, Clemons TD, Willcox S, Griffith J, Peters EB, Karver MR, Tsihlis ND, Maile R, Stupp SI, Kibbe MR. Development of novel nanofibers targeted to smoke-injured lungs. Biomaterials 2021; 274:120862. [PMID: 33975274 DOI: 10.1016/j.biomaterials.2021.120862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Smoke inhalation injury is associated with significant mortality and current therapies remain supportive. The purpose of our study was to identify proteins upregulated in the lung after smoke inhalation injury and develop peptide amphiphile nanofibers that target these proteins. We hypothesize that nanofibers targeted to angiotensin-converting enzyme or receptor for advanced glycation end products will localize to smoke-injured lungs. METHODS Five targeting sequences were incorporated into peptide amphiphile monomers methodically to optimize nanofiber formation. Nanofiber formation was assessed by conventional transmission electron microscopy. Rats received 8 min of wood smoke. Levels of angiotensin-converting enzyme and receptor for advanced glycation end products were evaluated by immunofluorescence. Rats received the targeted nanofiber 23 h after injury via tail vein injection. Nanofiber localization was determined by fluorescence quantification. RESULTS Peptide amphiphile purity (>95%) and nanofiber formation were confirmed. Target proteins were increased in smoke inhalation versus sham (p < 0.001). After smoke inhalation and injection of targeted nanofibers, we found a 10-fold increase in angiotensin-converting enzyme-targeted nanofiber localization to lung (p < 0.001) versus sham with minimal localization of non-targeted nanofiber (p < 0.001). CONCLUSIONS We synthesized, characterized, and evaluated systemically delivered targeted nanofibers that localized to the site of smoke inhalation injury in vivo. Angiotensin-converting enzyme-targeted nanofibers serve as the foundation for developing a novel nanotherapeutic that treats smoke inhalation lung injury.
Collapse
Affiliation(s)
- Alexandra I Mercel
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kathleen Marulanda
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Smaranda Willcox
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jack Griffith
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA; Curriculum of Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|