1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Yao YW, Tsai CH, Liu CY, Wang FY, Hsu SCN, Lin CC, Chen HT, Kao CL. A 11B-NMR Method for the In Situ Monitoring of the Formation of Dynamic Covalent Boronate Esters in Dendrimers. Polymers (Basel) 2024; 16:3258. [PMID: 39684003 DOI: 10.3390/polym16233258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and 11B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the 11B NMR spectra. The same titration did not alter the resonance of amine-coordinated boronate esters, which gave resonances of 14 ppm in the 11B NMR spectra. Therefore, boronic acids, boronate esters, and amine-coordinated boronate esters gave three identical resonances, and the ratio of each component was obtained by deconvolution for a further equilibrium analysis. This method monitored the conversion among three species in various conditions, including separation. Accordingly, boronate esters were more stable after precipitation than chromatography, in which 29% and 20% of boronate esters were lost after purification. This method was applied to study the reaction between the boronic acid-decorated defect lysine dendron (16) and dopamine. No boronic acid signal was observed after adding 1 equivalent of dopamine; no boronic acid signal was observed in the NMR spectrum. According to the spectrum, the product contains 65% boronate ester and 35% N-B-coordinated derivatives. This method helps identify the presence of the three intermediates and provides more insights into this reaction.
Collapse
Affiliation(s)
- Yi-Wen Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Hua Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yi Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Yu Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Cheng Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Ting Chen
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
3
|
Lv P, Wang Z, Si X, Su J, Yu Z, Yu H, Ji G, Song W. Biopolymer immune implants co-loaded with TMZ, R848 and IOX1 for perioperative therapy of glioblastoma. Acta Biomater 2024; 189:143-154. [PMID: 39368721 DOI: 10.1016/j.actbio.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma (GBM), a prevalent and aggressive brain tumor, poses significant treatment challenges due to its rapid progression and the difficulty in achieving complete surgical resection. The current treatment regime, primarily surgery followed by radiotherapy and chemotherapy, offers limited success, with a five-year survival rate of less than 10 %. For addressing the challenges faced in the treatment of GBM, an approach using a biopolymer implant constructed with dynamic reversible covalent bonds, was designed to achieve controlled and constant-rate release of chemotherapy drug (Temozolomide, TMZ), immune adjuvant (Resiquimod, R848) and checkpoint inhibitor (5-carboxy-8-hydroxyquinoline, IOX1). The safety evaluation demonstrated the biocompatibility of the implants, with no significant inflammatory response or adverse effects on various systemic organs. In vivo antitumor study showed that the local delivery of drug combination via this implant significantly inhibited tumor recurrence of orthotopic GBM. Immune analysis revealed that the combination of the three drugs effectively activated systemic antitumor immune responses and induced memory effects. The synergistic mechanism of the drug combination was further validated by RNA whole sequencing. The innovative approach of combining chemotherapy and immunotherapy in biopolymer immune implants for GBM treatment showed promising and opens new avenues for treating GBM, particularly in addressing postoperative recurrence. STATEMENT OF SIGNIFICANCE: Our research introduces a pioneering approach in treating orthotopic brain glioblastoma (GBM), characterized by inevitable tumor recurrence, poor immune infiltration and the restrictive nature of the blood-brain barrier. To break the impasse of ineffective treatment for GBM, the innovative use of dynamically reversible covalent bonds in polymer matrix ensures the controlled, stable and sustained release of drug combinations of the chemotherapeutic agent temozolomide, immune adjuvants and checkpoint inhibitors, which maintains the optimal concentration in the tumor, overcoming problems associated with conventional chemotherapy such as systemic toxicity and low tumor targeting. Empirical evidence from in vivo experiments on the rat GBM model demonstrates significant outcomes: 90 % tumor size reduction and prolonged survival with over 70 % tumor cure rate.
Collapse
Affiliation(s)
- Pinxin Lv
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| | - Zhifei Yu
- The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Guofeng Ji
- Xuanwu Hospital, Capital Medical University, Beijing 100010, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
4
|
Appiah E, Nakamura H, Assumang A, Etrych T, Haratake M. Chemical modification of bradykinin-polymer conjugates for optimum delivery of nanomedicines to tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102744. [PMID: 38460653 DOI: 10.1016/j.nano.2024.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.
Collapse
Affiliation(s)
- Enoch Appiah
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Anthony Assumang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
5
|
Valle H, Palao-Suay R, Aguilar MR, Lerma TA, Palencia M, Mangalaraja RV, Guzmán L, Pérez Sotelo D, Becerra J. Nanocarrier of α-Tocopheryl Succinate Based on a Copolymer Derivative of (4,7-dichloroquinolin-2-yl)methanol and Its Cytotoxicity against a Breast Cancer Cell Line. Polymers (Basel) 2023; 15:4342. [PMID: 38006067 PMCID: PMC10674486 DOI: 10.3390/polym15224342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In order to improve the water solubility and, therefore, bioavailability and therapeutic activity of anticancer hydrophobic drug α-tocopherol succinate (α-TOS), in this work, copolymers were synthesized via free radicals from QMES (1-[4,7-dichloroquinolin-2-ylmethyl]-4-methacryloyloxyethyl succinate) and VP (N-vinyl-2-pirrolidone) using different molar ratios, and were used to nanoencapsulate and deliver α-TOS into cancer cells MCF-7. QMES monomer was chosen because the QMES pendant group in the polymer tends to hydrolyze to form free 4,7-dichloro-2-quinolinemethanol (QOH), which also, like α-TOS, exhibit anti-proliferative effects on cancerous cells. From the QMES-VP 30:70 (QMES-30) and 40:60 (QMES-40) copolymers obtained, it was possible to prepare aqueous suspensions of empty nanoparticles (NPs) loaded with α-TOS by nanoprecipitation. The diameter and encapsulation efficiency (%EE) of the QMES-30 NPs loaded with α-TOS were 128.6 nm and 52%; while for the QMES-40 NPs loaded with α-TOS, they were 148.8 nm and 65%. The results of the AlamarBlue assay at 72 h of treatment show that empty QMES-30 NPs (without α-TOS) produced a marked cytotoxic effect on MCF-7 breast cancer cells, corresponding to an IC50 value of 0.043 mg mL-1, and importantly, they did not exhibit cytotoxicity against healthy HUVEC cells. Furthermore, NP-QMES-40 loaded with α-TOS were cytotoxic with an IC50 value of 0.076 mg mL-1, demonstrating a progressive release of α-TOS; however, the latter nanoparticles were also cytotoxic to healthy cells in the range of the assayed concentrations. These results contribute to the search for a new polymeric nanocarrier of QOH, α-TOS or other hydrophobic drugs for the treatment of cancer or others diseases treatable with these drugs.
Collapse
Affiliation(s)
- Hernán Valle
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| | - Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (R.P.-S.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (R.P.-S.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Tulio A. Lerma
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Science, University of Valle, Cali 760042, Colombia
- Mindtech Research Group (Mindtech-RG), Mindtech s.a.s., Barranquilla 080006, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Science, University of Valle, Cali 760042, Colombia
| | | | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| | - Dairo Pérez Sotelo
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - José Becerra
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| |
Collapse
|
6
|
Liu P. Polyprodrugs for tumor chemotherapy: from molecular structure to drug release performance. J Mater Chem B 2023; 11:9565-9571. [PMID: 37791422 DOI: 10.1039/d3tb01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Polyprodrugs have been recognized as promising carrier-free drug delivery systems (DDSs) for tumor chemotherapy in recent years, showing distinct superiority in comparison with the conventional polymer prodrugs. In the present work, the structure-property relationship of polyprodrugs was explored from the perspective of molecular structure, by discussing the effects of the conjugations and linkers on their drug content and drug releasing performance, including drug releasing rate and drug releasing selectivity, as well as the anti-tumor performance of the released drugs. Moreover, the future challenges in the design of polyprodrug-based DDSs with high anti-tumor efficacy were also highlighted.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
7
|
Dou J, Mi Y, Daneshmand S, Heidari Majd M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Tarabukina E, Borisenko M, Solovskiy M. Copolymers of acrylic acid with 2-hydroxyethyl methacrylate as carriers of two tuberculostatics: Synthesis, properties in solutions, drug release. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2088387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elena Tarabukina
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Maksim Borisenko
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Mikhail Solovskiy
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Haddleton D, Efstathiou S, Ma C, Coursari D, Patias G, Al-Shok L, Eissa AM. Functional pH-responsive polymers containing dynamic enaminone linkages for the release of active organic amines. Polym Chem 2022. [DOI: 10.1039/d2py00167e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent bonds have attracted attention for the development of pH-responsive polymers, however, studies using acid-cleavable enaminone linkages as a means of controlled drug release have been limited. Herein, we...
Collapse
|
10
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|
11
|
Xu ZY, Liu HK, Wu Y, Zhang YC, Zhou W, Wang H, Zhang DW, Ma D, Li ZT. Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS APPLIED BIO MATERIALS 2021; 4:4591-4597. [DOI: 10.1021/acsabm.1c00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yun-Chang Zhang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Takahashi R, Doi K, Fujii S, Sakurai K. Flower Necklaces of Controllable Length Formed From N-(2-Hydroxypropyl) Methacrylamide-Based Amphiphilic Statistical Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11556-11563. [PMID: 32931288 DOI: 10.1021/acs.langmuir.0c02032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-(2-Hydroxypropyl)methacrylamide (HPMA)-based statistical copolymers bearing anticancer drugs have attracted attention for their efficacy in cancer treatments. However, controlling the size and morphology of aggregates of this type of polymer has been challenging and is far from being understood. In this study, small-angle X-ray scattering and asymmetric-flow field-flow fractionation with multiangle light scattering were used to investigate the structure of aggregates formed in aqueous solutions of HPMA-based statistical copolymers of different molecular weights with the model drug pyrene borne in different amounts. The analysis revealed that spherical objects (flower micelles) were formed by the assembly of pyrene moieties in low-molecular-weight copolymers, and the flower micelles connected linearly to form string-of-pearls assemblies (flower necklaces) in high-molecular-weight copolymers. The number of pyrene moieties per polymer chain likely dominates the size and morphology of the copolymer micelles. This study shows how to alter the aggregate structure by changing the molecular weight and composition of copolymers.
Collapse
Affiliation(s)
- Rintaro Takahashi
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kiyomasa Doi
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|