1
|
Zhao M, Zhang M, Ni S. Role of ginsenoside Rg1 as a PPAR-γ activator in protecting against manganese-induced hepatotoxicity: Insights into the TLR4/MyD88/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117573. [PMID: 39708455 DOI: 10.1016/j.ecoenv.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigates the protective effect of ginsenoside Rg1 against manganese (Mn)-induced hepatotoxicity, highlighting its role as a PPAR-γ activator and its impact on TLR4/MyD88/MAPK pathway. Manganese induces liver damage through mechanisms involving oxidative stress and inflammation. Rg1, a principal bioactive compound of ginseng, significantly alleviates Mn-induced liver injury. Rg1 markedly enhances the activities of SOD, GSH, and CAT, while reducing levels of MDA and ROS, indicating an improvement in antioxidant defense capacity. Furthermore, Rg1 decreases inflammatory markers iNOS, TNF-α, IL-6, IL-12 and NO levels, underscoring its strong anti-inflammatory effects. Importantly, as a PPAR-γ activator, Rg1 upregulates PPAR-γ expression, subsequently inhibiting TLR4/MyD88/MAPK pathway. Additionally, silencing of PPAR-γ diminishes the protective effects of Rg1, while overexpression of PPAR-γ enhances them. The findings conclude that Rg1 exerts significant hepatoprotective effects against manganese-induced damage by activating PPAR-γ and modulating TLR4/MyD88/MAPK pathway, positioning it as a promising candidate for the treatment of Mn-induced hepatotoxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China
| | - Min Zhang
- Department of Physical examination Center, Tongji Hospital Branch Affiliated to Tongji University, China
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China.
| |
Collapse
|
2
|
Liang P, Zhang J, Hou J, Feng R, Yin J. Pharmacokinetics study of ginsenoside Rg1 liposome by pulmonary administration. Heliyon 2024; 10:e29906. [PMID: 38720740 PMCID: PMC11076820 DOI: 10.1016/j.heliyon.2024.e29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Ginsenoside Rg1 (Rg1), a monomer saponin component, is one of the components with the highest content in total saponins of Panaxnotoginseng. It had various pharmacological effects. The bioavailability of oral tablets is only 1-20 %, and it is eliminated quickly in the blood. The development of new dosage forms and new routes of administration of ginsenoside Rg1 with sustained release and high bioavailability has become a significant problem to be solved. The Rg1 liposomes study used a thin film dispersion ultrasound method for its preparation. This study focused the pharmacokinetic parameters of ginsenoside Rg1 liposomes in rats through the lung perfusion method. Ginsenoside Rg1 liposomes were round and uniform in shape, the particle size was 2-3 μm, and the encapsulation efficiency of ginsenoside Rg1 liposome was 51.2 %. Results showed that, after pulmonary administration of ginsenoside Rg1, the time of ginsenoside Rg1 detected by Rg1 liposomes was longer than that of Rg1 solution, the relative bioavailability of ginsenoside Rg1 liposome lung administration AUC liposome/AUC solution = 122.67 %. These results provided the scientific theoretical and experimental basis for further development of new dosage forms and new routes of administration of ginsenoside Rg1.
Collapse
Affiliation(s)
- Ping Liang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Jie Zhang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Juan Hou
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Rui Feng
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
- Tianjin University, Nankai District, 300072, Tianjin, China
| | - Jintuo Yin
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| |
Collapse
|
3
|
Sun J, Fleishman JS, Liu X, Wang H, Huo L. Targeting novel regulated cell death:Ferroptosis, pyroptosis, and autophagy in sepsis-associated encephalopathy. Biomed Pharmacother 2024; 174:116453. [PMID: 38513593 DOI: 10.1016/j.biopha.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
4
|
Gao Q, Li G, Zu Y, Xu Y, Wang C, Xiang D, He W, Shang T, Cheng X, Liu D, Zhang C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117089. [PMID: 37634749 DOI: 10.1016/j.jep.2023.117089] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, treating colitis, type 2 diabetes, diarrhea, and recovering hepatobiliary function. Ginsenosides, the main active components isolated from ginseng, possess liver and gallbladder diseases therapeutic potential. AIMS OF THE STUDY Cholestatic liver injury (CLI) is a liver disease induced by intrahepatic accumulation of toxic bile acids and currently lacks clinically effective drugs. Our previous study found that ginsenosides alleviated CLI by activating sirtuin 1 (SIRT1), but the effective ingredients and the underlying mechanism have not been clarified. This study aimed to identify an effective ingredient with the most significant activation effect on SIRT1 from the five major monomer saponins of ginsenosides: Rb1, Rd, Rg1, 20s-Rg3, and Rc further explore its protective effects on CLI, and elaborate its underlying mechanism. MATERIALS AND METHODS Discovery Studio 3.0 was used to conduct molecular docking between monomer saponins and SIRT1, and further detect the influence of monomer saponins on SIRT1 activity in vitro. Finally, it was determined that Rg1 had the most significant stimulative effect on SIRT1, and the hepatoprotective activity of Rg1 in CLI was explored in vivo. Wild-type mice were intragastrically α-naphthylisothiocyanate (ANIT) to establish an experimental model of intrahepatic cholestasis and Rg1 intervention, and then liver injury and cholestasis related indexes were detected. In addition, Liver-specific SIRT1 gene knockout (SIRT1-/-) mice were administered with ANIT and/or Rg1 to further investigate the mechanism of action of Rg1. RESULTS The results of molecular docking and in vitro experiments showed that all the five ginsenoside monomers could bind to the active site of SIRT1 and promote SIRT1 activity in HepG2 cells. Among them, Rg1 exhibited the most significant stimulation of SIRT1 activity in cholestasis. Besides, it could ameliorate ANIT-induced inflammation and oxidative stress in HepG2 cells. Therefore, we investigated the hepatoprotective effect and mechanism of Rg1 on CLI. Results showed that Rg1 reversed the ANIT-induced increase in biochemical parameters, improved liver pathological injury, and decreased liver lipid accumulation, reactive oxygen species and pro-inflammatory factor levels. Mechanistically, Rg1 induced SIRT1 expression, followed by promoted the activity of Nrf2 and suppressed the activation of NF-κB. Interestingly, the hepatoprotective effect of Rg1 was blocked in SIRT1-/- mice. CONCLUSION Rg1 mitigated ANIT-induced CLI via upregulating SIRT1 expression, and our results suggested that Rg1 is a candidate compound for treating CLI.
Collapse
Affiliation(s)
- Qianyan Gao
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congyi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Cheng
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
6
|
Zhang N, Liu YJ, Yang C, Zeng P, Gong T, Tao L, Zheng Y, Chen TT. Review of research progress on the role of the effective components of traditional Chinese medicine in sepsis with multiple organ dysfunction. Heliyon 2023; 9:e21713. [PMID: 38027612 PMCID: PMC10665755 DOI: 10.1016/j.heliyon.2023.e21713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The concept of sepsis has recently evolved from one of a 'systemic inflammatory response syndrome caused by infection' to a 'severe, potentially fatal organic dysfunction caused by an inadequate or imbalanced host response to infection'. Organ dysfunction is closely related to sepsis. Multiple organ dysfunction syndrome (MODS) is the most serious outcome of sepsis, often leading to a poor prognosis. However, specific drugs for sepsis and MODS caused by sepsis remain undetermined, and the fatality rate is relatively high. Under the guidance of modern medicine, traditional Chinese medicine (TCM) has gained a wealth of experience in the prevention and treatment of sepsis and plays a key role via the effects of its numerous components, pathways and targets. This study used 'Sepsis', 'Organ dysfunction' and 'Traditional Chinese medicine' as strategies for searching the databases of Chinese National Knowledge Infrastructure, Wanfang, PubMed and The Web of Science. This paper presents an overview of the current status of TCM component formulations for preventing and treating sepsis with MODS to provide a theoretical basis for clinical treatment and drug development.
Collapse
Affiliation(s)
- Nai Zhang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Yu-Juan Liu
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Chuang Yang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Peng Zeng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Tao Gong
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Lu Tao
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ying Zheng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ting-Ting Chen
- Department of Nursing, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| |
Collapse
|
7
|
Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring Neuroprotective Agents for Sepsis-Associated Encephalopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:10780. [PMID: 37445958 DOI: 10.3390/ijms241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is a life-threatening condition resulting from an inflammatory overreaction that is induced by an infectious factor, which leads to multi-organ failure. Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that can lead to acute cognitive and consciousness disorders, and no strict diagnostic criteria have been created for the complication thus far. The etiopathology of SAE is not fully understood, but plausible mechanisms include neuroinflammation, blood-brain barrier disruption, altered cerebral microcirculation, alterations in neurotransmission, changes in calcium homeostasis, and oxidative stress. SAE may also lead to long-term consequences such as dementia and post-traumatic stress disorder. This review aims to provide a comprehensive summary of substances with neuroprotective properties that have the potential to offer neuroprotection in the treatment of SAE. An extensive literature search was conducted, extracting 71 articles that cover a range of substances, including plant-derived drugs, peptides, monoclonal antibodies, and other commonly used drugs. This review may provide valuable insights for clinicians and researchers working in the field of sepsis and SAE and contribute to the development of new treatment options for this challenging condition.
Collapse
Affiliation(s)
- Klaudia Krzyzaniak
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Robert Krion
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Aleksandra Szymczyk
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewelina Stepniewska
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
8
|
Paik S, Song GY, Jo EK. Ginsenosides for therapeutically targeting inflammation through modulation of oxidative stress. Int Immunopharmacol 2023; 121:110461. [PMID: 37331298 DOI: 10.1016/j.intimp.2023.110461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Ginsenosides are steroid glycosides derived from ginseng plants such as Panax ginseng, Panax quinquefolium, and Panax notoginseng. Advances in recent studies have identified numerous physiological functions of each type of ginsenoside, i.e., immunomodulatory, antioxidative, and anti-inflammatory functions, in the context of inflammatory diseases. Accumulating evidence has revealed the molecular mechanisms by which the single or combined ginsenoside(s) exhibit anti-inflammatory effects, although it remains largely unclear. It is well known that excessive production of reactive oxygen species (ROS) is associated with pathological inflammation and cell death in a variety of cells, and that inhibition of ROS generation ameliorates the local and systemic inflammatory responses. The mechanisms by which ginsenosides attenuate inflammation are largely unknown; however, targeting ROS is suggested as one of the crucial mechanisms for the ginsenosides to control the pathological inflammation in the immune and non-immune cells. This review will summarize the latest progress in ginsenoside studies, particularly in the context of antioxidant mechanisms for its anti-inflammatory effects. A better understanding of the distinct types and the combined action of ginsenosides will pave the way for developing potential preventive and therapeutic modalities in treating various inflammation-related diseases.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
| |
Collapse
|
9
|
Wang M, Yang Y, Guo Y, Tan R, Sheng Y, Chui H, Chen P, Luo H, Ying Z, Li L, Zeng J, Zhao J. Xiaoxuming decoction cutting formula reduces LPS-stimulated inflammation in BV-2 cells by regulating miR-9-5p in microglia exosomes. Front Pharmacol 2023; 14:1183612. [PMID: 37266151 PMCID: PMC10229826 DOI: 10.3389/fphar.2023.1183612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The Background: Stroke is one of the leading causes of morbidity and mortality, and the inflammatory mechanism plays a crucial role in stroke-related brain injury and post-ischemic tissue damage. Xiaoxuming decoction (XXMD) is the first prescription for the treatment of "zhongfeng" (a broad concept referring to stroke) in the Tang and Song Dynasties of China and has a significant position in the history of stroke treatment. Through the study of ancient medical records and modern clinical evidence, it is evident that XXMD has significant efficacy in the treatment of stroke and its sequelae, and its pharmacological mechanism may be related to post-stroke inflammation. However, XXMD contains 12 medicinal herbs with complex composition, and therefore, a simplified version of XXMD, called Xiaoxuming decoction cutting (XXMD-C), was derived based on the anti-inflammatory effects of the individual herbs. Therefore, it is necessary to explore and confirm the anti-inflammatory mechanism of XXMD-C. Aim of the study: Based on the previous experiments of our research group, it was found that both XXMD and XXMD-C have anti-inflammatory effects on LPS-induced microglia, and XXMD-C has a better anti-inflammatory effect. Since miRNAs in exosomes also participate in the occurrence and development of cardiovascular diseases, and traditional Chinese medicine can regulate exosomal miRNAs through intervention, this study aims to explore the anti-inflammatory mechanism of XXMD-C in the treatment of post-stroke inflammation through transcriptome sequencing, providing a basis for the application of XXMD-C. Materials and methods: XXMD-C was extracted using water and filtered through a 0.22 μm membrane filter. The main chemical components of the medicinal herbs in XXMD-C were rapidly qualitatively analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Cell viability was determined using the CCK-8 assay, and an LPS-induced BV-2 cell inflammation model was established. The expression of inflammatory cytokines was detected using ELISA and Western blot (WB). Extracellular vesicles were extracted using ultracentrifugation, and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis, and WB. Differential miRNAs were screened using smallRNA-seq sequencing, and validated using RT-PCR and Western blot. Results: The UPLC-Q-TOF-MS analysis revealed that representative components including ephedrine, pseudoephedrine, cinnamaldehyde, baicalin, baicalein, wogonin, and ginsenoside Rg1 were detected in XXMD-C. The results of ELISA and WB assays showed that XXMD-C had a therapeutic effect on LPS-induced inflammation in BV-2 cells. TEM, nanoparticle tracking analysis, and WB results demonstrated the successful extraction of extracellular vesicles using high-speed centrifugation. Differential miRNA analysis by smallRNA-seq identified miR-9-5p, which was validated by RT-PCR and WB. Inhibition of miR-9-5p was found to downregulate the expression of inflammatory factors including IL-1β, IL-6, iNOS, and TNF-α. Conclusion: The study found that XXMD-C has anti-neuroinflammatory effects. Through smallRNA-seq sequencing of extracellular vesicles, miR-9-5p was identified as a key miRNA in the mechanism of XXMD-C for treating neuroinflammation, and its in vivo anti-inflammatory mechanism deserves further investigation.
Collapse
Affiliation(s)
- Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yuting Yang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanmei Sheng
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huawei Chui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhujun Ying
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|