1
|
Jiang D, Kwon HK, Kwon OW, Choi Y. A Comparative Molecular Dynamics Study of Food-Derived Compounds as PD-L1 Inhibitors: Insights Across Six Flavonoid Subgroups. Molecules 2025; 30:907. [PMID: 40005217 PMCID: PMC11858612 DOI: 10.3390/molecules30040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigated the inhibitory potential of 60 flavonoids from six distinct subgroups on the programmed cell death ligand 1 (PD-L1) dimer through molecular docking and dynamics simulations. Using AutoDock Vina for docking, the binding poses and affinities were evaluated, revealing an average binding affinity of -8.5 kcal/mol for the flavonoids. Among them, ginkgetin exhibited the highest binding free energy of -46.73 kcal/mol, indicating a strong interaction with PD-L1, while diosmin followed closely, with -44.96 kcal/mol. Molecular dynamics simulations were used to further elucidate the dynamic interactions and stability of the flavonoid-PD-L1 complexes, with the analyses showing minimal root mean square deviation (RMSD) and favorable root mean square fluctuation (RMSF) profiles for several compounds, particularly formononetin, idaein, and neohesperidin. Additionally, contact number and hydrogen bond analyses were performed, which highlighted ginkgetin and diosmin as key flavonoids with significant binding interactions, evidenced by their stable conformations and robust molecular interactions throughout the simulations. Ultimately, a cell-based assay confirmed their ability to inhibit the proliferation of cancer cells. These results, validated through cell-based assays, indicate that the strategy of identifying natural compounds with anticancer activity using computational modeling is highly effective.
Collapse
Affiliation(s)
- Dejun Jiang
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Hyuk-Ku Kwon
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Oh Wook Kwon
- Pet-Loss Center, Hoseo University, Asan 31499, Republic of Korea;
| | - Youngjin Choi
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
2
|
Cao Y, Tan YJ, Huang D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:10694. [PMID: 39409020 PMCID: PMC11477439 DOI: 10.3390/ijms251910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
3
|
Kaur S, Mendonca P, Soliman KFA. The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer. Nutrients 2024; 16:2392. [PMID: 39125273 PMCID: PMC11314279 DOI: 10.3390/nu16152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol's potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
4
|
Zamanian MY, Golmohammadi M, Abdullaev B, García MO, Alazbjee AAA, Kumar A, Mohaamed SS, Hussien BM, Khalaj F, Hodaei SM, Shirsalimi N, Moriasi G. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem Funct 2024; 42:e4011. [PMID: 38583080 DOI: 10.1002/cbf.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- School of Medicine, Central Asian University, Tashkent, Uzbekistan
- Department of Medical Oncology and Radiology, Samarkand State Medical University
| | - María Olalla García
- Universidad Estatal de Bolívar, Facultad de Ciencias de la Salud y del Ser Humano, Carrera de Enfermería, CP, Guaranda, Ecuador
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Sameer S Mohaamed
- Department of Pharmacy, Al Rafidain University College, Bagdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
5
|
Prestianni L, Espinal ER, Hathcock SF, Vollmuth N, Wang P, Holler RA, Liu S, Kim BJ, Bao Y. Synthesis and Characterization of Quercetin-Iron Complex Nanoparticles for Overcoming Drug Resistance. Pharmaceutics 2023; 15:pharmaceutics15041041. [PMID: 37111527 PMCID: PMC10144594 DOI: 10.3390/pharmaceutics15041041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Quercetin, one of the major natural flavonoids, has demonstrated great pharmacological potential as an antioxidant and in overcoming drug resistance. However, its low aqueous solubility and poor stability limit its potential applications. Previous studies suggest that the formation of quercetin-metal complexes could increase quercetin stability and biological activity. In this paper, we systematically investigated the formation of quercetin-iron complex nanoparticles by varying the ligand-to-metal ratios with the goal of increasing the aqueous solubility and stability of quercetin. It was found that quercetin-iron complex nanoparticles could be reproducibly synthesized with several ligand-to-iron ratios at room temperature. The UV-Vis spectra of the nanoparticles indicated that nanoparticle formation greatly increased the stability and solubility of quercetin. Compared to free quercetin, the quercetin-iron complex nanoparticles exhibited enhanced antioxidant activities and elongated effects. Our preliminary cellular evaluation suggests that these nanoparticles had minimal cytotoxicity and could effectively block the efflux pump of cells, indicating their potential for cancer treatment.
Collapse
Affiliation(s)
- Lucas Prestianni
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Eric R Espinal
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sarah F Hathcock
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nadine Vollmuth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Pixiang Wang
- Department of Chemistry and Physics, Center for Materials and Manufacturing Sciences, Troy University, Troy, AL 36082, USA
| | - Robert A Holler
- Alabama Analytical Research Center, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shaoyang Liu
- Department of Chemistry and Physics, Center for Materials and Manufacturing Sciences, Troy University, Troy, AL 36082, USA
| | - Brandon J Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35487, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Long Intergenic Non-Protein Coding RNA 173 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235923. [PMID: 36497407 PMCID: PMC9737410 DOI: 10.3390/cancers14235923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs belong to non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides and limited protein-coding ability. Growing research has clarified that dysregulated lncRNAs are correlated with the development of various complex diseases, including cancer. LINC00173 has drawn researchers' attention as one of the recently discovered lncRNAs. Aberrant expression of LINC00173 affects the initiation and progression of human cancers. In the present review, we summarize the recent considerable research on LINC00173 in 11 human cancers. Through the summary of the abnormal expression of LINC00173 and its potential molecular regulation mechanism in cancers, this article indicates that LINC00173 may serve as a potential diagnostic biomarker and a target for drug therapy, thus providing novel clues for future related research.
Collapse
|
8
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
9
|
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Histone deacetylases modulate resistance to the therapy in lung cancer. Front Genet 2022; 13:960263. [PMID: 36263432 PMCID: PMC9574126 DOI: 10.3389/fgene.2022.960263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 12/07/2022] Open
Abstract
The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.
Collapse
Affiliation(s)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Nuñez-Corona
- Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Cesar Luna-Rivero
- Servicio de Patología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Victor Martínez-Cruz
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
- *Correspondence: Ángeles Carlos-Reyes,
| |
Collapse
|
10
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|
11
|
Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis. Int J Mol Sci 2022; 23:3544. [PMID: 35408903 PMCID: PMC8998549 DOI: 10.3390/ijms23073544] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Resistance to 5-Fluorouracil (5-Fu) chemotherapy is the main cause of treatment failure in the cure of colon cancer. Therefore, there is an urgent need to explore a safe and effective multidrug resistance reversal agent for colorectal cancer, which would be of great significance for improving clinical efficacy. The dietary flavonoid kaempferol plays a key role in the progression of colorectal cancer and 5-Fu resistance. However, the molecular mechanism of kaempferol in reversing 5-Fu resistance in human colorectal cancer cells is still unclear. We found that kaempferol could reverse the drug resistance of HCT8-R cells to 5-Fu, suggesting that kaempferol alone or in combination with 5-Fu has the potential to treat colorectal cancer. It is well known that aerobic glycolysis is related to tumor growth and chemotherapy resistance. Indeed, kaempferol treatment significantly reduced glucose uptake and lactic acid production in drug-resistant colorectal cancer cells. In terms of mechanism, kaempferol promotes the expression of microRNA-326 (miR-326) in colon cancer cells, and miR-326 could inhibit the process of glycolysis by directly targeting pyruvate kinase M2 isoform (PKM2) 3'-UTR (untranslated region) to inhibit the expression of PKM2 or indirectly block the alternative splicing factors of PKM mRNA, and then reverse the resistance of colorectal cancer cells to 5-Fu. Taken together, our data suggest that kaempferol may play an important role in overcoming resistance to 5-Fu therapy by regulating the miR-326-hnRNPA1/A2/PTBP1-PKM2 axis.
Collapse
Affiliation(s)
- Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Jin’e Du
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Chenglu Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (H.W.); (J.D.); (C.L.); (H.L.)
| | - Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
12
|
Albini A, Festa MMG, Ring N, Baci D, Rehman M, Finzi G, Sessa F, Zacchigna S, Bruno A, Noonan DM. A Polyphenol-Rich Extract of Olive Mill Wastewater Enhances Cancer Chemotherapy Effects, While Mitigating Cardiac Toxicity. Front Pharmacol 2021; 12:694762. [PMID: 34434106 PMCID: PMC8381749 DOI: 10.3389/fphar.2021.694762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular toxicity remains one of the most adverse side effects in cancer patients receiving chemotherapy. Extra-virgin olive oil (EVOO) is rich in cancer preventive polyphenols endowed with anti-inflammatory, anti-oxidant activities which could exert protective effects on heart cells. One very interesting derivative of EVOO preparation is represented by purified extracts from olive mill waste waters (OMWW) rich in polyphenols. Here, we have investigated the anti-cancer activity of a OMWW preparation, named A009, when combined with chemotherapeutics, as well as its potential cardioprotective activities. Mice bearing prostate cancer (PCa) xenografts were treated with cisplatin, alone or in combination with A009. In an in vivo model, we found synergisms of A009 and cisplatin in reduction of prostate cancer tumor weight. Hearts of mice were analyzed, and the mitochondria were studied by transmission electron microscopy. The hearts of mice co-treated with A009 extracts along with cisplatin had reduced mitochondria damage compared to the those treated with chemotherapy alone, indicating a cardioprotective role. To confirm the in vivo results, tumor cell lines and rat cardiomyocytes were treated with cisplatin in vitro, with and without A009. Another frequently used chemotherapeutic agent 5-fluorouracil (5-FU), was also tested in this assay, observing a similar effect. In vitro, the combination of A009 with cisplatin or 5-FU was effective in decreasing prostate and colon cancer cell growth, while it did not further reduce growth of rat cardiomyocytes also treated with cisplatin or 5-FU. A009 cardioprotective effects towards side effects caused by 5-FU chemotherapy were further investigated, using cardiomyocytes freshly isolated from mice pups. A009 mitigated toxicity of 5-FU on primary cultures of mouse cardiomyocytes. Our study demonstrates that the polyphenol rich purified A009 extracts enhance the effect of chemotherapy in vitro and in vivo, but mitigates chemotherpy adverse effects on heart and on isolated cardiomyocytes. Olive mill waste water extracts could therefore represent a potential candidate for cardiovascular prevention in patients undergoing cancer chemotherapy.
Collapse
Affiliation(s)
- Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Marco M G Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Nadja Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Michael Rehman
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Fausto Sessa
- Department of Pathology, ASST Settelaghi, Varese, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.,Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Unit of Molecular Pathology, Immunology and Biochemistry, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|