1
|
Kwon DH, Shin S, Nam YS, Choe N, Lim Y, Jeong A, Lee YG, Kim YK, Kook H. CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification. Exp Mol Med 2024; 56:2246-2259. [PMID: 39349831 PMCID: PMC11541702 DOI: 10.1038/s12276-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC.
Collapse
Affiliation(s)
- Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yoon Seok Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yongwoon Lim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Anna Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Gyeong Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Zhang Q, Wu Q, Huan XJ, Song SS, Bao XB, Miao ZH, Wang YQ. Co-inhibition of BET and NAE enhances BIM-dependent apoptosis with augmented cancer therapeutic efficacy. Biochem Pharmacol 2024; 223:116198. [PMID: 38588830 DOI: 10.1016/j.bcp.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Chen W, Wang Y, Xia W, Zhang J, Zhao Y. Neddylation-mediated degradation of hnRNPA2B1 contributes to hypertriglyceridemia pancreatitis. Cell Death Dis 2022; 13:863. [PMID: 36220838 PMCID: PMC9554191 DOI: 10.1038/s41419-022-05310-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Hypertriglyceridemia-induced acute pancreatitis (HTGP) is characterized by the acute and excessive release of FFA produced by pancreatic lipases. However, the underlying mechanisms of this disease remain poorly understood. In this study, we describe the involvement of the RNA binding protein hnRNPA2B1 in the development of HTGP. We used palmitic acid (PA) and AR42J cells to create a model of HTGP in vitro. RT-PCR and western blot analyses revealed a decrease in the level of hnRNPA2B1 protein but not mRNA expression in PA-treated cells. Further analyses revealed that hnRNPA2B1 expression was regulated at the post-translational level by neddylation. Restoration of hnRNPA2B1 expression using the neddylation inhibitor MLN4924 protected AR42J cells from PA-induced inflammatory injury by preventing NF-κB activation and restoring fatty acid oxidation and cell proliferation. Furthermore, RNA immunoprecipitation studies demonstrated that hnRNPA2B1 orchestrates fatty acid oxidation by regulating the expression of the mitochondrial trifunctional protein-α (MTPα). Administration of MLN4924 in vivo restored hnRNPA2B1 protein expression in the pancreas of hyperlipidemic mice and ameliorated HTGP-associated inflammation and pancreatic tissue injury. In conclusion, we show that hnRNPA2B1 has a central regulatory role in preventing HTGP-induced effects on cell metabolism and viability. Furthermore, our findings indicate that pharmacological inhibitors that target neddylation may provide therapeutic benefits to HTGP patients.
Collapse
Affiliation(s)
- Wei Chen
- grid.412538.90000 0004 0527 0050Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| | - Yilong Wang
- grid.412538.90000 0004 0527 0050Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| | - Wenwen Xia
- grid.412538.90000 0004 0527 0050Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| | - Jinbao Zhang
- grid.452461.00000 0004 1762 8478Department of Critical Medicine, the First Hospital of Shanxi Medical University, 030000 Shanxi, China
| | - Yan Zhao
- grid.412538.90000 0004 0527 0050Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| |
Collapse
|
4
|
Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol 2021; 14:57. [PMID: 33827629 PMCID: PMC8028724 DOI: 10.1186/s13045-021-01070-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yan-Jia Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
6
|
Affiliation(s)
- Bin Yu
- Children's Hospital Affiliated to Zhengzhou University Zhengzhou Children's Hospital. School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 45001, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy Sichuan University Chengdu 610041, China
| |
Collapse
|