1
|
Carracedo-Reboredo P, Aranzamendi E, He S, Arrasate S, Munteanu CR, Fernandez-Lozano C, Sotomayor N, Lete E, González-Díaz H. MATEO: intermolecular α-amidoalkylation theoretical enantioselectivity optimization. Online tool for selection and design of chiral catalysts and products. J Cheminform 2024; 16:9. [PMID: 38254200 PMCID: PMC10804835 DOI: 10.1186/s13321-024-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The enantioselective Brønsted acid-catalyzed α-amidoalkylation reaction is a useful procedure is for the production of new drugs and natural products. In this context, Chiral Phosphoric Acid (CPA) catalysts are versatile catalysts for this type of reactions. The selection and design of new CPA catalysts for different enantioselective reactions has a dual interest because new CPA catalysts (tools) and chiral drugs or materials (products) can be obtained. However, this process is difficult and time consuming if approached from an experimental trial and error perspective. In this work, an Heuristic Perturbation-Theory and Machine Learning (HPTML) algorithm was used to seek a predictive model for CPA catalysts performance in terms of enantioselectivity in α-amidoalkylation reactions with R2 = 0.96 overall for training and validation series. It involved a Monte Carlo sampling of > 100,000 pairs of query and reference reactions. In addition, the computational and experimental investigation of a new set of intermolecular α-amidoalkylation reactions using BINOL-derived N-triflylphosphoramides as CPA catalysts is reported as a case of study. The model was implemented in a web server called MATEO: InterMolecular Amidoalkylation Theoretical Enantioselectivity Optimization, available online at: https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo . This new user-friendly online computational tool would enable sustainable optimization of reaction conditions that could lead to the design of new CPA catalysts along with new organic synthesis products.
Collapse
Affiliation(s)
- Paula Carracedo-Reboredo
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, University of A Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Eider Aranzamendi
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Shan He
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940, Leioa, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Cristian R Munteanu
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, University of A Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, University of A Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Nuria Sotomayor
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain.
| | - Esther Lete
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
2
|
Scotti MT, Muratov EN, González-Díaz H. New Experimental and Computational Tools for Drug Discovery - Part-VIII. Curr Top Med Chem 2020; 20:277-279. [DOI: 10.2174/156802662004200304125617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Marcus T. Scotti
- Chemistry Department, Federal University of Paraíba, Joao Pessoa, PB, 58051-970, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill , North Carolina 27599, United States
| | - Humbert González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| |
Collapse
|