1
|
Zhao Y, Ren J, Chen W, Gao X, Yu H, Li X, Zheng Y, Yang J. Effects of polyphenols on non-alcoholic fatty liver disease: a case study of resveratrol. Food Funct 2025; 16:2926-2946. [PMID: 40094314 DOI: 10.1039/d4fo04787g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The primary etiology of liver disease is non-alcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The efficacy of plant-derived polyphenolic compounds has been extensively demonstrated with respect to various aspects and recently proved to be effective at preventing and treating NAFLD. To describe the sources and functions of polyphenolic constituents and clarify the therapeutic effects of polyphenolic constituents on NAFLD, resveratrol (RSV), which has significant therapeutic effects, was selected for a comprehensive analysis. Bibliometric and network pharmacology analyses revealed a strong correlation between insulin resistance (IR), oxidative stress, steatosis, and NAFLD, as well as the significance of intestinal flora and therapeutic interventions for NAFLD. This study reviewed the mechanisms by which RSV acted against NAFLD and explored techniques to enhance its bioavailability. These findings offer new insights into the treatment of NAFLD and the development of innovative RSV formulations.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongjian Yu
- Hefei Hechen Biotechnology Co., Ltd, Hefei 230011, China
| | - Xiankuan Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yanchao Zheng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Romero-Martínez M, Andrade-Pizarro R, De Paula C. Functional compounds in tropical fruit processing by-products and intrinsic factors affecting their composition: A review. Curr Res Food Sci 2025; 10:101028. [PMID: 40190386 PMCID: PMC11968299 DOI: 10.1016/j.crfs.2025.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Tropical fruits, highly demanded in the food industry, generate a considerable amount of waste during processing. These traditionally discarded by-products, such as peels, seeds and pomace, are rich in bioactive compounds, natural molecules that have beneficial properties for human health, as they participate in various metabolic processes in the organism. Among the most prominent compounds are flavonoids, carotenoids, phenolic compounds, tannins and vitamin C. Beyond their health benefits, these compounds have significant industrial value and are widely used in the textile, pharmaceutical, cosmetic, biotechnological and food fields, in the latter especially as preservatives, additives, colorants and others. This review explores the main bioactive compounds found in fruit by-products, highlighting their functional relevance and analyzing the intrinsic or fruit-derived factors that influence the composition of these compounds, such as the type of by-product (peels, seeds, bagasse, pomace), the variety of fruit, and the state of maturity at the time of processing. In addition, the extraction methods used to obtain these compounds are addressed, differentiating between conventional techniques, such as solvent extraction, and emerging methods, such as ultrasound-assisted extraction and supercritical fluid extraction, which offer advantages in terms of efficiency and sustainability. The diversity of bioactive compounds and their potential application in various industries highlight the importance of ongoing research in this field. It is necessary to further study the factors that influence the composition of these compounds, as well as the development of more efficient and sustainable extraction methods. These advances will not only add value to food industry waste, but will also contribute to the development of natural products with health benefits.
Collapse
Affiliation(s)
- María Romero-Martínez
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Ricardo Andrade-Pizarro
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Claudia De Paula
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| |
Collapse
|
3
|
Tan Q. The Beneficial Effects of Combined Exercise and Polyphenols in Alzheimer's Disease. Phytother Res 2025; 39:1020-1034. [PMID: 39716920 DOI: 10.1002/ptr.8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Regular exercise enhances life quality, lowers the risk of cognitive damage, and slows the advancement of Alzheimer's disease (AD). Natural compounds rich in polyphenols have garnered attention as a non-pharmacological means of treating and preventing AD. The primary component of wine, grape seeds, and nuts is polyphenols. Research suggests that polyphenols slow down the rate of neurodegeneration in AD and lessen learning impairment. Furthermore, polyphenols lessen brain impairments related to cognition. Additionally, polyphenols can specifically restructure amyloid-β (Aβ) structures and soluble oligomers into non-toxic alternative species. They have also been revealed to increase brain-derived neurotrophic factors expression, suggesting that they have a positive impact on the creation of neurotrophins. The benefits of polyphenol supplementation and exercise, which can both provide neuroprotection, have not been well studied in AD patients. This review aimed to investigate the effects of combined exercise polyphenols on inflammation, neuroprotection, several conformational toxic species of Aβ, and Aβ-induced apoptosis in AD.
Collapse
Affiliation(s)
- Qinghua Tan
- Graduate School of Education in Physical Education, Sangmyung University, Seoul, Korea
| |
Collapse
|
4
|
Yu J, Xu L, Mi L, Zhang N, Liu F, Zhao J, Xu Z. Integrated, high-throughput metabolomics approach for metabolite analysis of four sprout types. Food Chem 2025; 463:141182. [PMID: 39276547 DOI: 10.1016/j.foodchem.2024.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
In this study, we combined two distinct extraction and separation techniques with the aim of comprehensively collecting metabolite features in sprouts, particularly hydrophilic compounds. By synergistically analyzing the data using MS-DIAL and MetaboAnalystR, we obtained a greater number of annotated metabolites and explored differences in annotation across analytical tools. We found that this approach significantly increased the number of detected metabolite features and the final identification counts. Furthermore, we explored the functional component characteristics of four sprout types. This study provides data supporting the potential of sprouts as nutritious vegetables and functional food ingredients, emphasizing their value in the development of functional foods.
Collapse
Affiliation(s)
- Junyan Yu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lei Xu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lu Mi
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Nan Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Zhenzhen Xu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Zhang Y, Yang E, Chen M, Zhang J, Liu Q, Lei Z, Xu T, Cai X, Feng C. Quality diversity of three calcium-rich Primulina vegetables: A comprehensive analysis of calcium content, metabolite profiles, taste characteristics, and medicinal potential. Food Chem 2025; 463:141538. [PMID: 39388873 DOI: 10.1016/j.foodchem.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Primulina plants native to karst regions are exceptionally rich in calcium and have been developed into high‑calcium leafy vegetables. However, limited knowledge of their metabolites, taste characteristics, and potential medicinal value restricts further genetic improvements. This study conducted a comprehensive analysis on three breeding species of Primulina vegetables. Common garden experiment demonstrated significant calcium enrichment capability, with calcium content ranging from 204.45 to 391.52 mg/100 g. Through widely-targeted metabolomics, 1121 metabolites were identified within these Primulina vegetables. Furthermore, comparative analysis identified 976 differentially accumulated metabolites across nine comparison groups, driven mainly by flavonoids, phenolic acids, and lipids. Integration of electronic tongue analysis and metabolomics revealed taste profiles and identified 17 key candidate compounds related to taste. Based on network pharmacology analysis, 32 active ingredients were found in Primulina vegetables, which highlighted potential medicinal value. These findings provide a data-driven foundation for breeding programs aimed at enhancing nutritional and flavor traits.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinxia Cai
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| |
Collapse
|
6
|
Khanfar MA, Saleh MI. SARS-CoV-2 Main Protease Inhibitors from Natural Product Repository as Therapeutic Candidates for the Treatment of Coronaviridae Infections. Curr Med Chem 2025; 32:688-719. [PMID: 38013440 DOI: 10.2174/0109298673271674231109052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The main protease (Mpro) is a crucial enzyme for the life cycle of SARS-CoV-2 and a validated target for the treatment of COVID-19 infection. Natural products have been a proper alternative for treating viral diseases by modulating different steps of the life cycle of many viruses. OBJECTIVE This review article is designed to summarize the cumulative information of natural-derived Mpro inhibitors that are validated by experimental biological testing. METHODS The natural-derived Mpro inhibitors of SARS-CoV-2 that have been discovered since the emergence of the COVID-19 pandemic are reviewed in this article. Only natural products with experimental validation are reported in this article. Collected compounds are classified according to their chemical identity into flavonoids, phenolic acids, quinones, alkaloids, chromones, stilbenes, tannins, lignans, terpenes, and other polyphenolic and miscellaneous natural-derived Mpro inhibitors. CONCLUSION These compounds could serve as scaffolds for further lead-structure optimization for desirable potency, a larger margin of safety, and better oral activity.
Collapse
Affiliation(s)
- Mohammad Abdalmoety Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| | - Mohammad Issa Saleh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| |
Collapse
|
7
|
Yuan X, Hua Y, Chen SX, Song Q, Li XO, Zhang Y, Dai XH. Sludge-derived biostimulants promote glycosylation of tricin and luteolin in the flavone and flavonol biosynthesis to enhance anti-inflammatory activities of rice. ENVIRONMENTAL RESEARCH 2024; 263:120133. [PMID: 39393451 DOI: 10.1016/j.envres.2024.120133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Alkaline thermal hydrolysis of sewage sludge produces nutrients and biostimulants that enhance plant growth, attracting considerable interest in agriculture. However, the metabolic differences and regulatory mechanisms of sewage sludge-derived biostimulants (SS-BS) on the phenotypic traits, nutritional quality, and safety indicators of harvested crops remain unclear. This study investigates the impact of SS-BS on rice quality on an agricultural production scale. The research reveals that rice treated with SS-BS complies with safety standards comparable to premium rice. SS-BS significantly enhances nutrient enrichment in the endosperm, increasing protein, vitamin B1, dietary fiber, and vitamin E content by 7%, 7.2%, 23.2%, and 42.2%, respectively. Furthermore SS-BS upregulates the FG2 gene,leading to increased Nictoflorin content and activation of the gene expression of UGT73C6 and CYP75A, which catalyze O-glycosylation and promot glycosyl transfer. By inhibiting the synthesis of Trifolin, Scolymoside, and Swertiajaponin, SS-BS favors the synthesis of glycosylated derivatives of Tricin and Luteolin, which exhibit higher anti-inflammatory activity. Additionally, two novel genes, novel.2100 and novel.1300, and an uncharacterized gene, LOC9269295, are closely associated with the production of anti-inflammatory and antioxidant compounds. This study provides new evidence for SS-BS application and insights into their regulatory mechanisms affecting crop quality, contributing to the development of functional foods and sustainable agriculture.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai, 200092, China.
| | - Shu-Xian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai, 200092, China
| | - Qi Song
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiao-Ou Li
- Nantong Yuezichun Biological Agriculture Technology Co., Ltd, Nantong, 226000, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Luo HZ, Xiang J, Gui WY, Gong JH, Zou JD, Li CY. Chemical Screening, Identification, and Comparison of Tripterygium Hypoglaucum Hutch Preparations by Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Combined With Multivariate Statistical Analysis. J Sep Sci 2024; 47:e70023. [PMID: 39532771 DOI: 10.1002/jssc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Colquhounia root tablets (CRT) and Tripterygium hypoglaucum hutch tablets (THHT), two major Tripterygium hypoglaucum hutch (THH) commercial preparations, have been used to treat chronic kidney diseases or rheumatic diseases. However, there have been no reports on the chemical comparison between CRT and THHT, greatly hindering the understanding of their pharmacological difference as well as their rational application in clinical practice. In the present study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry combined with automated data analysis by MS-DIAL software and MS-FLO website was employed to systematically screen and characterize the components in CRT and THHT. Multivariate statistical analysis was used to compare the differences between these two preparations. As a result, up to 92 components were tentatively identified, and 17 of them were characterized for the first time in THH preparations. According to the criteria of variable importance in projection (VIP) >1, p < 0.05, and fold change (FC) > 1.2, 46 components could be screened as major differential chemical components. Among them, phenolic acids, organic acids, amino acids, and diterpenoids were higher in CRT, while the sesquiterpene alkaloids were relatively higher in THHT. This study clarified the chemical material basis and the difference between CRT and THHT, providing a valuable reference for quality control and clinical rational use of THH preparations.
Collapse
Affiliation(s)
- Hui-Zhi Luo
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Xiang
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hui Gong
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Ahmed S, Zengin G, Selvi S, Ak G, Cziáky Z, Jekő J, Rodrigues MJ, Custodio L, Venanzoni R, Flores GA, Cusumano G, Angelini P. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024; 13:795. [PMID: 39338986 PMCID: PMC11435373 DOI: 10.3390/pathogens13090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the biochemical composition and biological properties of different parts (leaves, roots, and twigs) of two Cistus species (Cistus monspeliasis and Cistus parviflorus). The extracts were analysed using UHPLC-MS/MS to determine their chemical profiling. A range of antioxidant assays were performed to evaluate the extract's antioxidant capabilities. The enzyme inhibition studies focused on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase and tyrosinase. In addition, the study examined the antimicrobial effects on different bacteria and yeasts and evaluated the toxicity using the MTT assay. Quinic acid, citric acid, gallic acid, catechin, quercetin derivatives, kaempferol, myricetin, ellagic acid, prodelphinidins, procyanidins, scopoletin, and flavogallonic acid dilactone are the main bioactive compounds found in both species. In enzyme inhibition assays, C. monspeliasis roots exhibited significant activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with the values of 2.58 ± 0.02 mg GALAE/g and 11.37 ± 1.93 mg GALAE/g, respectively. Cytotoxicity studies showed mostly weak toxicity, with some samples moderately reducing viability in RAW and HepG2 cells. These findings underscore the diverse biochemical profiles and bioactive potential of Cistus species, suggesting their utility as natural sources of antioxidants and enzyme inhibitors for pharmaceutical and nutraceutical development.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir 10870, Turkey;
| | - Gunes Ak
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Maria J. Rodrigues
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Luisa Custodio
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| |
Collapse
|
10
|
Beilankouhi S, Pourfarzad A, Ghanbarzadeh B, Rasouli M, Hamishekar H. Identification of polyphenol composition in grape ( Vitis vinifera cv. Bidaneh Sefid) stem using green extraction methods and LC-MS/MS analysis. Food Sci Nutr 2024; 12:6789-6798. [PMID: 39554317 PMCID: PMC11561822 DOI: 10.1002/fsn3.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/19/2024] Open
Abstract
The utilization of grape stems, a by-product of the grape processing industry, as a source of valuable bioactive compounds, particularly polyphenols, has gained attention in recent years. This study aimed to investigate different eco-friendly extraction methods for obtaining polyphenols from grape (Vitis vinifera cv. Bidaneh Sefid) stems, focusing on green solvents and innovative techniques. Four extraction methods were tested, involving the use of water and polyethylene glycol (PEG) as green solvents, along with maceration, microwave, ultrasound, and reduced-pressure techniques. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to characterize and quantify the bioactive compounds in the extracts. A total of 29 polyphenols, including phenolic acids, flavonoids, proanthocyanidins, and stilbenes, were detected. Among the four extraction methods tested, methods 1 (water + microwave + ultrasound + atmospheric pressure) and 2 (water + microwave + ultrasound + reduced pressure) were found to be the most effective. Our study demonstrated that using water and PEG as green solvents, combined with techniques like microwave, ultrasound, and reduced pressure, effectively extracted both hydrophobic and hydrophilic compounds from the grape stems. These findings suggest that further exploration of these methods could lead to the development of value-added products from grape stems, emphasizing the significance of green extraction techniques for the recovery of polyphenols from winemaking by-products.
Collapse
Affiliation(s)
- Shiva Beilankouhi
- Department of Pharmaceutical Sciences, Drug Applied Research CenterUniversity of Medical SciencesTabrizIran
- Department of Environmental ScienceResearch Institute for Grapes and Raisin (RIGR)HamedanIran
| | - Amir Pourfarzad
- Faculty of Agricultural Sciences, Department of Food Science and TechnologyUniversity of GuilanRashtIran
| | - Babak Ghanbarzadeh
- Faculty of Agriculture, Department of Food Science and TechnologyUniversity of TabrizTabrizIran
| | - Mousa Rasouli
- Faculty of Agriculture and Natural Resources, Department of Horticultural Science EngineeringImam Khomeini International UniversityQazvinIran
| | - Hamed Hamishekar
- Drug Applied Research CenterUniversity of Medical SciencesTabrizIran
| |
Collapse
|
11
|
Wang P, Wang Z, Zhang M, Yan X, Xia J, Zhao J, Yang Y, Gao X, Wu Q, Gong D, Yu P, Zeng Z. Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts. Foods 2024; 13:2064. [PMID: 38998569 PMCID: PMC11241286 DOI: 10.3390/foods13132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Cinnamomum camphora seed kernels (CCSKs) are rich in phytochemicals, especially plant extracts. Phytochemicals play a vital role in therapy due to their strong antioxidant and anti-inflammatory activities. Extracts from CCSK can be obtained through multiple steps, including pretreatment, extraction and purification, and the purpose of pretreatment is to separate the oil from other substances in CCSKs. However, C. camphora seed kernel extracts (CKEs) were usually considered as by-products and discarded, and their potential bioactive values were underestimated. Additionally, little has been known about the effect of pretreatment on CKE. This study aimed to investigate the effects of pretreatment methods (including the solvent extraction method, cold pressing method, aqueous extraction method and sub-critical fluid extraction method) on the extraction yields, phytochemical profiles, volatile compounds and antioxidant capacities of different CKE samples. The results showed that the CKE samples were rich in phenolic compounds (15.28-20.29%) and alkaloids (24.44-27.41%). The extraction yield, bioactive substances content and in vitro antioxidant capacity of CKE pretreated by the sub-critical fluid extraction method (CKE-SCFE) were better than CKEs obtained by other methods. CKE pretreated by the solvent extraction method (CKE-SE) showed the best lipid emulsion protective capacity. Moreover, the volatile substances composition of the CKE samples was greatly influenced by the pretreatment method. The results provided a fundamental basis for evaluating the quality and nutritional value of CKE and increasing the economic value of by-products derived from CCSK.
Collapse
Affiliation(s)
- Pengbo Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhixin Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Manqi Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Junxin Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yujing Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiansi Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qifang Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Sehrawat R, Pasrija R, Rathee P, Kumari D, Khatkar A, Küpeli Akkol E, Sobarzo-Sánchez E. Hybrid Caffeic Acid-Based DHFR Inhibitors as Novel Antimicrobial and Anticancer Agents. Antibiotics (Basel) 2024; 13:479. [PMID: 38927146 PMCID: PMC11200944 DOI: 10.3390/antibiotics13060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
A novel series of 1,2,4-triazole analogues of caffeic acid was designed, synthesized, characterized, and assessed for their capacity to inhibit DHFR, as well as their anticancer and antimicrobial properties. A molecular docking analysis was conducted on DHFR, utilizing PDB IDs 1U72 and 2W9S, aiming to design anticancer and antimicrobial drugs, respectively. Among all the synthesized derivatives, compound CTh7 demonstrated the highest potency as a DHFR inhibitor, with an IC50 value of 0.15 μM. Additionally, it exhibited significant cytotoxic properties, with an IC50 value of 8.53 µM. The molecular docking analysis of the CTh7 compound revealed that it forms strong interactions with key residues of homo sapiens DHFR such as Glu30, Phe34, Tyr121, Ile16, Val115, and Phe31 within the target protein binding site and displayed excellent docking scores and binding energy (-9.9; -70.38 kcal/mol). Additionally, synthesized compounds were screened for antimicrobial properties, revealing significant antimicrobial potential against bacterial strains and moderate effects against fungal strains. Specifically, compound CTh3 exhibited notable antibacterial efficacy against Staphylococcus aureus (MIC = 5 µM). Similarly, compound CTh4 demonstrated significant antibacterial activity against both Escherichia coli and Pseudomonas aeruginosa, with MIC values of 5 µM for each. A docking analysis of the most active antimicrobial compound CTh3 revealed that it forms hydrogen bonds with Thr121 and Asn18, a π-cation bond with Phe92, and a salt bridge with the polar residue Asp27.
Collapse
Affiliation(s)
- Renu Sehrawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India; (R.P.); (D.K.)
| | - Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Deepika Kumari
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India; (R.P.); (D.K.)
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 417, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Li A, Jin K, Zhang Y, Deng X, Chen Y, Wei X, Hu B, Jiang Y. Root exudates and rhizosphere microbiota in responding to long-term continuous cropping of tobacco. Sci Rep 2024; 14:11274. [PMID: 38760388 PMCID: PMC11101450 DOI: 10.1038/s41598-024-61291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Soil sickness a severe problem in tobacco production, leading to soil-borne diseases and reduce in tobacco yield. This occurs as a result of the interaction between root exudates and rhizosphere microorganisms, which is however, little studied until now. By combining the field investigation and pot experiment, we found the output yield consistently decreased during the first 10 years of continuous cropping in a tobacco field, but increased at the 15th year (15Y). The root exudate and rhizosphere bacterial community was further analyzed to reveal the underlying mechanism of the suppressive soil formation. Root exudate of 15Y tobacco enriched in amino acids and derivatives, while depleted in the typical autotoxins including phenolic acids and alkaloids. This was correlated to the low microbial diversity in 15Y, but also the changes in community composition and topological properties of the co-occurrence network. Especially, the reduced autotoxins were associated with low Actinobacteria abundance, low network complexity and high network modularity, which significantly correlated with the recovered output yield in 15Y. This study revealed the coevolution of rhizosphere microbiota and root exudate as the soil domesticated by continuous cropping of tobacco, and indicated a potential role of the autotoxins and theirs effect on the microbial community in the formation of suppressive soil.
Collapse
Affiliation(s)
- Abo Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Horticulture Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Keke Jin
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - YuZhen Zhang
- Qingdao Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Sun P, Zheng P, Chen P, Wu D, Xu S. Engineering of 4-hydroxyphenylacetate 3-hydroxylase derived from Pseudomonas aeruginosa for the ortho-hydroxylation of ferulic acid. Int J Biol Macromol 2024; 264:130545. [PMID: 38431000 DOI: 10.1016/j.ijbiomac.2024.130545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Polyphenolic compounds have natural antioxidant properties, and their antioxidant activity is usually related to the number and position of hydroxyls. Here, we successfully applied the engineered 4-hydroxyphenylacetate 3-hydroxylases (4HPA3Hs) derived from Pseudomonas aeruginosa to catalyze ferulic acid (FA) synthesis of ortho-hydroxyferulic acid (5-hydroxyferulic acid, 5-OHFA). Through optimization of co-expression, the oxygenase component (PaHpaB) and the reductase component (PaHpaC) in E. coli, and optimization of whole-cell catalytic conditions, the engineered strain BC catalyzed ortho-hydroxylation of 2 g/L of FA with a yield of 75 % from 39 %. Through tunnel engineering of PaHpaB, the obtained mutants F301A and Q376A almost completely transformed 2 g/L of FA. Further, a multiple mutant L214A/F301A/Q376A converted 4 g/L FA into 5-OHFA within 12 h, and the yield reached 99.9 %, which was approximately 2.39-fold of the wild type. The kcat/Km value of L214A/F301A/Q376A was about 307 times greater than that of the wide type. Analysis of three-dimensional structural models showed that L214, F301, and Q376 mutated into Ala, which greatly shortened the side chain and broadened the tunnel size, thereby significantly improving the catalytic efficiency of L214A/F301A/Q376A. This biosynthesis of 5-OHFA is simple, efficient, and green, suggesting that it is useful for efficient biosynthesis of polyphenolic compounds.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China..
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuping Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
16
|
Zhou X, Gong F, Dong J, Lin X, Cao K, Xu H, Zhou X. Abscisic Acid Affects Phenolic Acid Content to Increase Tolerance to UV-B Stress in Rhododendron chrysanthum Pall. Int J Mol Sci 2024; 25:1234. [PMID: 38279235 PMCID: PMC10816200 DOI: 10.3390/ijms25021234] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-β-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
17
|
Shatilov AA, Andreev SM, Shatilova AV, Turetskiy EA, Kurmasheva RA, Babikhina MO, Saprygina LV, Shershakova NN, Bolyakina DK, Smirnov VV, Shilovsky IP, Khaitov MR. Synthesis and Biological Properties of Polyphenol-Containing Linear and Dendrimeric Cationic Peptides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:173-183. [PMID: 38467553 DOI: 10.1134/s0006297924010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.
Collapse
Affiliation(s)
- Artem A Shatilov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
| | - Sergey M Andreev
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia.
| | | | - Evgeny A Turetskiy
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Renata A Kurmasheva
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Marina O Babikhina
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- MIREA - Russian Technological University, Moscow, 119454, Russia
| | - Larisa V Saprygina
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- MIREA - Russian Technological University, Moscow, 119454, Russia
| | | | | | - Valeriy V Smirnov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Igor P Shilovsky
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
18
|
Sehrawat R, Rathee P, Rathee P, Khatkar S, Akkol EK, Khatkar A, Sobarzo-Sánchez E. In silico design of novel bioactive molecules to treat breast cancer with chlorogenic acid derivatives: a computational and SAR approach. Front Pharmacol 2023; 14:1266833. [PMID: 38152692 PMCID: PMC10751932 DOI: 10.3389/fphar.2023.1266833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/19/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Cancer is a vast group of diseases comprising abnormal cells that multiply and grow uncontrollably, and it is one of the top causes of death globally. Several types of cancers are diagnosed, but the incidence of breast cancer, especially in postmenopausal women, is increasing daily. Chemotherapeutic agents used to treat cancer are generally associated with severe side effects on host cells, which has led to a search for safe and potential alternatives. Therefore, the present research has been conducted to find novel bioactive molecules to treat breast cancer with chlorogenic acid and its derivatives. Chlorogenic acid was selected because of its known activity in the field. Methods: Several chlorogenic acid derivatives were subjected to computational studies such as molecular docking, determination of absorption, distribution, metabolism, and excretion (ADME), druglikeness, toxicity, and prediction of activity spectra for substances (PASS) to develop a potential inhibitor of breast cancer. The Protein Data Bank (PDB) IDs used for docking purposes were 7KCD, 3ERT, 6CHZ, 3HB5, and 1U72. Result: Exhaustive analysis of results has been conducted by considering various parameters, like docking score, binding energy, types of interaction with important amino acid residues in the binding pocket, ADME, and toxicity data of compounds. Among all the selected derivatives, CgE18, CgE11, CgAm13, CgE16, and CgE9 have astonishing interactions, excellent binding energy, and better stability in the active site of targeted proteins. The docking scores of compound CgE18 were -11.63 kcal/mol, -14.15 kcal/mol, and -12.90 kcal/mol against breast cancer PDB IDs 7KCD, 3HB5, and 1U72, respectively. The docking scores of compound CgE11 were -10.77 kcal/mol and -9.11 kcal/mol against breast cancer PDB IDs 3ERT and 6CHZ, respectively, whereas the docking scores of epirubicin hydrochloride were -3.85 kcal/mol, -6.4 kcal/mol, -8.76 kcal/mol, and -10.5 kcal/mol against PDB IDs 7KCD, 3ERT, 6CHZ, and 3HB5. The docking scores of 5-fluorouracil were found to be -5.25 kcal/mol, -3.43 kcal/mol, -3.73 kcal/mol, and -5.29 kcal/mol against PDB IDs 7KCD, 3ERT, 6CHZ, and 3HB5, which indicates the designed compounds have a better docking score than some standard drugs. Conclusion: Taking into account the results of molecular docking, drug likeness analysis, absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation, and PASS, it can be concluded that chlorogenic acid derivatives hold promise as potent inhibitors for the treatment of breast cancer.
Collapse
Affiliation(s)
- Renu Sehrawat
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana, India
| | - Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak, India
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, Haryana, India
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Liu Z, Li X, Jin Y, Nan T, Zhao Y, Huang L, Yuan Y. New Evidence for Artemisia absinthium as an Alternative to Classical Antibiotics: Chemical Analysis of Phenolic Compounds, Screening for Antimicrobial Activity. Int J Mol Sci 2023; 24:12044. [PMID: 37569422 PMCID: PMC10418608 DOI: 10.3390/ijms241512044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Artemisia absinthium, an important herb of the Artemisia genus, was evaluated in this study for its potential as an alternative to classical antibiotics. The antimicrobial activity of methanol extracts of A. absinthium (MEAA) was evaluated using the broth microdilution method, revealing that A. absinthium exhibited broad-spectrum antibacterial and antifungal activity. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical profile of the MEAA, with a focus on flavonoids, quinic acids, and glucaric acids. A total of 90 compounds were identified, 69 of which were described for the first time in A. absinthium. Additionally, a new class of caffeoyl methyl glucaric acids was identified. The main active compounds were quantified and screened for antimicrobial activity. A. absinthium was found to be rich in quinic acids and flavonoids. The screening for antimicrobial activity also revealed that salicylic acid, caffeic acid, casticin, and 3,4-dicaffeoylquinic acid had varying degrees of antimicrobial activity. The acute toxicity of MEAA was examined following OECD guidelines. The administration of 5000 mg/kg bw of MEAA did not result in mortality in male and female mice. Furthermore, there were no observed effects on the visceral organs or general behavior of the mice, demonstrating the good safety of MEAA. This study provides new evidence for the use of A. absinthium as an alternative to classical antibiotics in addressing the problem of bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.)
| | | | | | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.)
| |
Collapse
|
20
|
Ghamry HI, Belal A, El-Ashrey MK, Tawfik HO, Alsantali RI, Obaidullah AJ, El-Mansi AA, Abdelrahman D. Evaluating the ability of some natural phenolic acids to target the main protease and AAK1 in SARS COV-2. Sci Rep 2023; 13:7357. [PMID: 37147518 PMCID: PMC10162004 DOI: 10.1038/s41598-023-34189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Researchers are constantly searching for drugs to combat the coronavirus pandemic caused by SARS-CoV-2, which has lasted for over two years. Natural compounds such as phenolic acids are being tested against Mpro and AAK1, which are key players in the SARS-CoV-2 life cycle. This research work aims to study the ability of a panel of natural phenolic acids to inhibit the virus's multiplication directly through Mpro and indirectly by affecting the adaptor-associated protein kinase-1 (AAK1). Pharmacophore mapping, molecular docking, and dynamic studies were conducted over 50 ns and 100 ns on a panel of 39 natural phenolic acids. Rosmarinic acid (16) on the Mpro receptor (- 16.33 kcal/mol) and tannic acid (17) on the AAK1 receptor (- 17.15 kcal/mol) exhibited the best docking energy against both receptors. These favourable docking score values were found to be superior to those of the co-crystallized ligands. Preclinical and clinical research is required before using them simultaneously to halt the COVID-19 life cycle in a synergistic manner.
Collapse
Affiliation(s)
- Heba I Ghamry
- Nutrition and Food Sciences, Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Mohamed Kandeel El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa Abdelrahman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Huang Z, Chen Y, Huang R, Zhao Z. Identification and Structure–Activity Relationship of Recovered Phenolics with Antioxidant and Antihyperglycemic Potential from Sugarcane Molasses Vinasse. Foods 2022; 11:foods11193131. [PMID: 36230205 PMCID: PMC9563075 DOI: 10.3390/foods11193131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Sugarcane molasses vinasse is the residue of the fermentation of molasses and the water and soil environmental pollutants from distilleries. However, its recycling value has been neglected. The chemical analysis of the molasses vinasse led to the isolation of a new benzoyl chloride called 2,3,4-trihydroxy-5-methoxy benzoyl chloride, as well as thirteen known compounds, including six benzoic acids. The structure of the new benzoyl chloride was elucidated on the basis of extensive spectroscopic analysis. The antioxidant activity of all isolated compounds was measured using the ORAC assay. Moreover, we compared the cellular antioxidant activity (CAA) and inhibitory activity against α-amylase and α-glucosidase for structure–activity analysis. The results showed that only vanillic acid had CAA (8.64 μmol QE/100 μmol in the no PBS wash protocol and 6.18 μmol QE/100 μmol in the PBS wash protocol), although other benzoic acid derivatives had high ORAC values ranging between 1879.9 and 32,648.1 μmol TE/g. Additional methoxy groups at the ortho-positions of the p-hydroxy group of benzoic acids enhanced the inhibition of α-glucosidase but reduced the ORAC activity unless at the para-position. This work indicated that phenolics, especially phenolic acids in the sugarcane molasses vinasse, possessed potential antioxidant and antihyperglycemic activity, which improved the utilization rate of resources and reduced the discharge of pollutants.
Collapse
Affiliation(s)
- Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinning Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Correspondence: ; Tel./Fax: +86-189-2500-8785
| |
Collapse
|