1
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Wang L, Covey DF, Akk G, Evers AS. Neurosteroid Modulation of GABA A Receptor Function by Independent Action at Multiple Specific Binding Sites. Curr Neuropharmacol 2022; 20:886-890. [PMID: 34856904 PMCID: PMC9881108 DOI: 10.2174/1570159x19666211202150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
Neurosteroids are endogenous modulators of GABAA receptors that mediate anxiety, pain, mood and arousal. The 3-hydroxyl epimers, allopregnanolone (3α-OH) and epiallopregnanolone (3β-OH) are both prevalent in the mammalian brain and produce opposite effects on GABAA receptor function, acting as positive and negative allosteric modulators, respectively. This Perspective provides a model to explain the actions of 3α-OH and 3β-OH neurosteroids. The model is based on evidence that the neurosteroid epimers bind to an overlapping subset of specific sites on GABAA receptors, with their net functional effect on channel gating being the sum of their independent effects at each site.
Collapse
Affiliation(s)
- Lei Wang
- Department of Anesthesiology (LW, DFC, GA, ASE),,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Douglas F. Covey
- Department of Anesthesiology (LW, DFC, GA, ASE),,Department of Developmental Biology (Pharmacology);,Department of Psychiatry (DFC) and
| | - Gustav Akk
- Department of Anesthesiology (LW, DFC, GA, ASE),,The Taylor Institute for Innovative Psychiatric Research (DFC, GA, ASE), Washington University School of Medicine, St. Louis, MO63110; U.S.A
| | - Alex S. Evers
- Department of Anesthesiology (LW, DFC, GA, ASE),,Department of Developmental Biology (Pharmacology);,The Taylor Institute for Innovative Psychiatric Research (DFC, GA, ASE), Washington University School of Medicine, St. Louis, MO63110; U.S.A,Address correspondence to this author at the Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Box # 8054, St. Louis, MO 63110, USA; Tel: +1 314-362-8557; E-mail:
| |
Collapse
|
3
|
Sugasawa Y, Cheng WW, Bracamontes JR, Chen ZW, Wang L, Germann AL, Pierce SR, Senneff TC, Krishnan K, Reichert DE, Covey DF, Akk G, Evers AS. Site-specific effects of neurosteroids on GABA A receptor activation and desensitization. eLife 2020; 9:55331. [PMID: 32955433 PMCID: PMC7532004 DOI: 10.7554/elife.55331] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study examines how site-specific binding to three identified neurosteroid-binding sites in the α1β3 GABAA receptor (GABAAR) contributes to neurosteroid allosteric modulation. We found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3β-epimer epi-allopregnanolone, binds to the canonical β3(+)–α1(-) intersubunit site that mediates receptor activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to intrasubunit sites in the β3 subunit, promoting receptor desensitization and the α1 subunit promoting effects that vary between neurosteroids. Two neurosteroid analogues with diazirine moieties replacing the 3-hydroxyl (KK148 and KK150) bind to all three sites, but do not potentiate GABAAR currents. KK148 is a desensitizing agent, whereas KK150 is devoid of allosteric activity. These compounds provide potential chemical scaffolds for neurosteroid antagonists. Collectively, these data show that differential occupancy and efficacy at three discrete neurosteroid-binding sites determine whether a neurosteroid has potentiating, inhibitory, or competitive antagonist activity on GABAARs.
Collapse
Affiliation(s)
- Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - John R Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Lei Wang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Allison L Germann
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Spencer R Pierce
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Thomas C Senneff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| | - David E Reichert
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Radiology, Washington University in St. Louis, St. Louis, United States
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States.,Department of Psychiatry, Washington University in St. Louis, St. Louis, United States
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Alex S Evers
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
4
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
5
|
Cheng WWL, Chen ZW, Bracamontes JR, Budelier MM, Krishnan K, Shin DJ, Wang C, Jiang X, Covey DF, Akk G, Evers AS. Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC. J Biol Chem 2018; 293:3013-3027. [PMID: 29301936 DOI: 10.1074/jbc.ra117.000359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Neurosteroids are endogenous sterols that potentiate or inhibit pentameric ligand-gated ion channels (pLGICs) and can be effective anesthetics, analgesics, or anti-epileptic drugs. The complex effects of neurosteroids on pLGICs suggest the presence of multiple binding sites in these receptors. Here, using a series of novel neurosteroid-photolabeling reagents combined with top-down and middle-down mass spectrometry, we have determined the stoichiometry, sites, and orientation of binding for 3α,5α-pregnane neurosteroids in the Gloeobacter ligand-gated ion channel (GLIC), a prototypic pLGIC. The neurosteroid-based reagents photolabeled two sites per GLIC subunit, both within the transmembrane domain; one site was an intrasubunit site, and the other was located in the interface between subunits. By using reagents with photoreactive groups positioned throughout the neurosteroid backbone, we precisely map the orientation of neurosteroid binding within each site. Amino acid substitutions introduced at either site altered neurosteroid modulation of GLIC channel activity, demonstrating the functional role of both sites. These results provide a detailed molecular model of multisite neurosteroid modulation of GLIC, which may be applicable to other mammalian pLGICs.
Collapse
Affiliation(s)
| | - Zi-Wei Chen
- Department of Anesthesiology; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, Missouri 63110
| | | | | | | | | | | | | | - Douglas F Covey
- Department of Anesthesiology; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, Missouri 63110; Department of Developmental Biology; Department of Psychiatry
| | - Gustav Akk
- Department of Anesthesiology; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, Missouri 63110
| | - Alex S Evers
- Department of Anesthesiology; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, Missouri 63110; Department of Developmental Biology.
| |
Collapse
|
6
|
Agusti A, Llansola M, Hernández-Rabaza V, Cabrera-Pastor A, Montoliu C, Felipo V. Modulation of GABAA receptors by neurosteroids. A new concept to improve cognitive and motor alterations in hepatic encephalopathy. J Steroid Biochem Mol Biol 2016; 160:88-93. [PMID: 26307490 DOI: 10.1016/j.jsbmb.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022]
Abstract
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome affecting patients with liver diseases, mainly those with liver cirrhosis. The mildest form of HE is minimal HE (MHE), with mild cognitive impairment, attention deficit, psychomotor slowing and impaired visuo-motor and bimanual coordination. MHE may progress to clinical HE with worsening of the neurological alterations which may lead to reduced consciousness and, in the worse cases, may progress to coma and death. HE affects several million people in the world and is a serious health, social and economic problem. There are no specific treatments for the neurological alterations in HE. The mechanisms underlying the cognitive and motor alterations in HE are beginning to be clarified in animal models. These studies have allowed to design and test in animal models of HE new therapeutic approaches which have successfully restored cognitive and motor function in rats with HE. In this article we review the evidences showing that.
Collapse
Affiliation(s)
- Ana Agusti
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
7
|
Chakrabarti S, Qian M, Krishnan K, Covey DF, Mennerick S, Akk G. Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed α1β2γ2L GABA(A) Receptors. Mol Pharmacol 2016; 89:399-406. [PMID: 26769414 PMCID: PMC4809306 DOI: 10.1124/mol.115.102202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABA(A)) receptor function. The effects of steroids on the GABA(A) receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABA(A) receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Mingxing Qian
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Kathiresan Krishnan
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Douglas F Covey
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, Hammock BD, Tancredi DJ, Rogawski MA, Pessah IN, Lein PJ. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology 2015; 95:332-42. [PMID: 25882826 DOI: 10.1016/j.neuropharm.2015.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant GABAA receptor blocker. Mice receiving a lethal dose of TETS (0.15 mg/kg i.p.) are rescued from death by a high dose of diazepam (5 mg/kg i.p.) administered shortly after the second clonic seizure (∼20 min post-TETS). However, this high dose of diazepam significantly impairs blood pressure and mobility, and does not prevent TETS-induced neuroinflammation in the brain. We previously demonstrated that TETS alters synchronous Ca(2+) oscillations in primary mouse hippocampal neuronal cell cultures and that pretreatment with the combination of diazepam and allopregnanolone at concentrations having negligible effects individually prevents TETS effects on intracellular Ca(2+) dynamics. Here, we show that treatment with diazepam and allopregnanolone (0.1 μM) 20 min after TETS challenge normalizes synchronous Ca(2+) oscillations when added in combination but not when added singly. Similarly, doses (0.03-0.1 mg/kg i.p.) of diazepam and allopregnanolone that provide minimal protection when administered singly to TETS intoxicated mice increase survival from 10% to 90% when given in combination either 10 min prior to TETS or following the second clonic seizure. This therapeutic combination has negligible effects on blood pressure or mobility. Combined treatment with diazepam and allopregnanolone also decreases TETS-induced microglial activation. Diazepam and allopregnanolone have distinct actions as positive allosteric modulators of GABAA receptors that in combination enhance survival and mitigate neuropathology following TETS intoxication without the adverse side effects associated with high dose benzodiazepines. Combination therapy with a benzodiazepine and neurosteroid represents a novel neurotherapeutic strategy with potentially broad application.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | | | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Chen ZW, Wang C, Krishnan K, Manion BD, Hastings R, Bracamontes J, Taylor A, Eaton MM, Zorumski CF, Steinbach JH, Akk G, Mennerick S, Covey DF, Evers AS. 11-trifluoromethyl-phenyldiazirinyl neurosteroid analogues: potent general anesthetics and photolabeling reagents for GABAA receptors. Psychopharmacology (Berl) 2014; 231:3479-91. [PMID: 24756762 PMCID: PMC4263769 DOI: 10.1007/s00213-014-3568-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/28/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE While neurosteroids are well-described positive allosteric modulators of gamma-aminobutyric acid type A (GABAA) receptors, the binding sites that mediate these actions have not been definitively identified. OBJECTIVES This study was conducted to synthesize neurosteroid analogue photolabeling reagents that closely mimic the biological effects of endogenous neurosteroids and have photochemical properties that will facilitate their use as tools for identifying the binding sites for neurosteroids on GABAA receptors. RESULTS Two neurosteroid analogues containing a trifluromethyl-phenyldiazirine group linked to the steroid C11 position were synthesized. These reagents, CW12 and CW14, are analogues of allopregnanolone (5α-reduced steroid) and pregnanolone (5β-reduced steroid), respectively. Both reagents were shown to have favorable photochemical properties with efficient insertion into the C-H bonds of cyclohexane. They also effectively replicated the actions of allopregnanolone and pregnanolone on GABAA receptor functions: they potentiated GABA-induced currents in Xenopus laevis oocytes transfected with α1β2γ2L subunits, modulated [(35)S]t-butylbicyclophosphorothionate binding in rat brain membranes, and were effective anesthetics in Xenopus tadpoles. Studies using [(3)H]CW12 and [(3)H]CW14 showed that these reagents covalently label GABAA receptors in both rat brain membranes and in a transformed human embryonal kidney (TSA) cells expressing either α1 and β2 subunits or β3 subunits of the GABAA receptor. Photolabeling of rat brain GABAA receptors was shown to be both concentration-dependent and stereospecific. CONCLUSIONS CW12 and CW14 have the appropriate photochemical and pharmacological properties for use as photolabeling reagents to identify specific neurosteroid-binding sites on GABAA receptors.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Cunde Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Kathiresan Krishnan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Brad D. Manion
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Randy Hastings
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - John Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Amanda Taylor
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Megan M. Eaton
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Joseph H. Steinbach
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Alex S. Evers
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of the Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
10
|
Gong QH, Smith SS. Characterization of neurosteroid effects on hyperpolarizing current at α4β2δ GABAA receptors. Psychopharmacology (Berl) 2014; 231:3525-35. [PMID: 24740493 PMCID: PMC4135043 DOI: 10.1007/s00213-014-3538-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE The neurosteroid 3α,5β-THP (3α-OH-5β-pregnan-20-one, pregnanolone) is a modulator of the GABAA receptor (GABAR), with α4β2δ GABARs the most sensitive. However, the effects of 3α,5β-THP at α4β2δ are polarity-dependent: 3α,5β-THP potentiates depolarizing current, as has been widely reported, but decreases hyperpolarizing current by accelerating desensitization. OBJECTIVES The present study further characterized 3α,5β-THP inhibition of hyperpolarizing current at this receptor and compared effects of other related steroids at α4β2δ GABARs. METHODS α4β2δ GABARs were expressed in HEK-293 cells, and agonist-gated current recorded with whole cell voltage-clamp techniques using a theta tube to rapidly apply agonist before and after application of neurosteroids. RESULTS The GABA-modulatory steroids (30 nM) 3α,5α-THP (3α-OH-5α-pregnan-20-one, allopregnanolone) and THDOC (3α,21-dihydroxy-5α-pregnan-20-one) inhibited hyperpolarizing GABA (10 μM)-gated current at α4β2δ GABARs similar to 3α,5β-THP, while the inactive 3β,5β-THP isomer had no effect. Greater inhibition was seen for current gated by the high efficacy agonist gaboxadol (THIP, 100 μM) than for GABA (0.1-1000 μM), consistent with an effect of 3α,5β-THP on desensitization. Inhibitory effects of the steroid were not seen under low [Cl(-)] conditions or in the presence of calphostin C (500 nM), an inhibitor of protein kinase C. Chimeras swapping the IL (intracellular loop) of α4 with α1, when expressed with β2 and δ, produced receptors (α[414]β2δ) which were not inhibited by 3α,5β-THP when GABA-gated current was hyperpolarizing, while α[141]β2δ exhibited steroid-induced polarity-dependent modulation. CONCLUSIONS These findings suggest that numerous neurosteroids exhibit polarity-dependent effects at α4β2δ GABARs, which are dependent upon protein kinase C and the IL of α4.
Collapse
Affiliation(s)
- Qi Hua Gong
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 10023 U.S.A
| |
Collapse
|
11
|
Qian M, Krishnan K, Kudova E, Li P, Manion BD, Taylor A, Elias G, Akk G, Evers AS, Zorumski CF, Mennerick S, Covey DF. Neurosteroid analogues. 18. Structure-activity studies of ent-steroid potentiators of γ-aminobutyric acid type A receptors and comparison of their activities with those of alphaxalone and allopregnanolone. J Med Chem 2014; 57:171-90. [PMID: 24328079 PMCID: PMC3951241 DOI: 10.1021/jm401577c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A model of the alignment of neurosteroids and ent-neurosteroids at the same binding site on γ-aminobutyric acid type A (GABAA) receptors was evaluated for its ability to identify the structural features in ent-neurosteroids that enhance their activity as positive allosteric modulators of this receptor. Structural features that were identified included: (1) a ketone group at position C-16, (2) an axial 4α-OMe group, and (3) a C-18 methyl group. Two ent-steroids were identified that were more potent than the anesthetic steroid alphaxalone in their threshold for and duration of loss of the righting reflex in mice. In tadpoles, loss of righting reflex for these two ent-steroids occurs with EC50 values similar to those found for allopregnanolone. The results indicate that ent-steroids have considerable potential to be developed as anesthetic agents and as drugs to treat brain disorders that are ameliorated by positive allosteric modulators of GABAA receptor function.
Collapse
Affiliation(s)
- Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Eva Kudova
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Ping Li
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Brad D. Manion
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Amanda Taylor
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | | | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Radiology, The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
| | - Alex S. Evers
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Radiology, The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Radiology, The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Radiology, The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, 63110, United States
- Department of Radiology, The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
| |
Collapse
|
12
|
Smith SS. α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity. Front Neural Circuits 2013; 7:135. [PMID: 24027497 PMCID: PMC3759753 DOI: 10.3389/fncir.2013.00135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/28/2013] [Indexed: 11/13/2022] Open
Abstract
The onset of puberty is associated with alterations in mood as well as changes in cognitive function, which can be more pronounced in females. Puberty onset in female mice is associated with increased expression of α4βδ γ-amino-butyric acid-A (GABAA) receptors (GABARs) in CA1 hippocampus. These receptors, which normally have low expression in this central nervous system (CNS) site, emerge along the apical dendrites as well as on the dendritic spines of pyramidal neurons, adjacent to excitatory synapses where they underlie a tonic inhibition that shunts excitatory current and impairs activation of N-methyl-D-aspartate (NMDA) receptors, the trigger for synaptic plasticity. As would be expected, α4βδ expression at puberty also prevents long-term potentiation (LTP), an in vitro model of learning which is a function of network activity, induced by theta burst stimulation of the Schaffer collaterals to the CA1 hippocampus. The expression of these receptors also impairs spatial learning in a hippocampal-dependent task. These impairments are not seen in δ knock-out (-/-) mice, implicating α4βδ GABARs. α4βδ GABARs are also a sensitive target for steroids such as THP ([allo]pregnanolone or 3α-OH-5α[β]-pregnan-20-one), which are dependent upon the polarity of GABAergic current. It is well-known that THP can increase depolarizing current gated by α4βδ GABARs, but more recent data suggest that THP can reduce hyperpolarizing current by accelerating receptor desensitization. At puberty, THP reduces the hyperpolarizing GABAergic current, which removes the shunting inhibition that impairs synaptic plasticity and learning at this time. However, THP, a stress steroid, also increases anxiety, via its action at α4βδ GABARs because it is not seen in δ(-/-) mice. These findings will be discussed as well as their relevance to changes in mood and cognition at puberty, which can be a critical period for certain types of learning and when anxiety disorders and mood swings can emerge.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center Brooklyn, NY 11203, USA.
| |
Collapse
|
13
|
The benzodiazepine diazepam potentiates responses of α1β2γ2L γ-aminobutyric acid type A receptors activated by either γ-aminobutyric acid or allosteric agonists. Anesthesiology 2013; 118:1417-25. [PMID: 23407108 DOI: 10.1097/aln.0b013e318289bcd3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The γ-aminobutyric acid (GABA) type A receptor is a target for several anesthetics, anticonvulsants, anxiolytics, and sedatives. Neurosteroids, barbiturates, and etomidate both potentiate responses to GABA and allosterically activate the receptor. We examined the ability of a benzodiazepine, diazepam, to potentiate responses to allosteric agonists. METHODS The GABA type A receptors were expressed in human embryonic kidney 293 cells and studied using whole-cell and single-channel patch clamp. The receptors were activated by the orthosteric agonist GABA and allosteric agonists pentobarbital, etomidate, and alfaxalone. RESULTS Diazepam is equally potent at enhancing responses to orthosteric and allosteric agonists. Diazepam EC50s were 25 ± 4, 26 ± 6, 33 ± 6, and 26 ± 3 nm for receptors activated by GABA, pentobarbital, etomidate, and alfaxalone, respectively (mean ± SD, 5-6 cells at each condition). Mutations to the benzodiazepine-binding site (α1(H101C), γ2(R144C), γ2(R197C)) reduced or removed potentiation for all agonists, and an inverse agonist at the benzodiazepine site reduced responses to all agonists. Single-channel data elicited by GABA demonstrate that in the presence of 1 μm diazepam the prevalence of the longest open-time component is increased from 13 ± 7 (mean ± SD, n = 5 patches) to 27 ± 8% (n = 3 patches) and the rate of channel closing is decreased from 129 ± 28 s(-1) to 47 ± 6 s(-1) (mean ± SD) CONCLUSIONS: We conclude that benzodiazepines do not act by enhancing affinity of the orthosteric site for GABA but rather by increasing channel gating efficacy. The results also demonstrate the presence of interactions between allosteric activators and potentiators, raising a possibility of effects on dosage requirements or changes in side effects.
Collapse
|
14
|
Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 2013; 536:122-30. [PMID: 23624382 DOI: 10.1016/j.abb.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a neuropsychiatric disorder caused by chronic or acute liver failure. Nearly thirty years ago a hypothesis was formulated explaining the neuropathology of HE by increased GABAergic tone. Recent progress in the GABAA-receptor (GABAAR) molecular pharmacology and biochemistry as well as the physiology of GABAergic transmission provided better understanding of GABA's role in health and disease. A detailed analysis of neuronal populations and their GABAergic afferents affected in HE is still missing. The slow progress in understanding the pathology of GABAergic transmission in HE is due to the high complexity of brain circuitries controlled by multiple types of GABAergic interneurons and the large variety of GABAAR, which are differently affected by pathological conditions and not yet fully identified. The mechanisms of action of the GABAAR agonist taurine, allosteric positive modulators (inhibitory neurosteroids, anaesthetics, benzodiazepines and histamine) and inhibitors of the GABAAR (excitatory neurosteroids, Ro15-4513) are discussed with respect to HE pathophysiology. Perspectives for GABAergic drugs in the symptomatic treatment of HE are suggested.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 2012; 37:109-22. [PMID: 23085210 DOI: 10.1016/j.neubiorev.2012.10.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Neurosteroids are potent and effective neuromodulators that are synthesized from cholesterol in the brain. These agents and their synthetic derivatives influence the function of multiple signaling pathways including receptors for γ-aminobutyric acid (GABA) and glutamate, the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS). Increasing evidence indicates that dysregulation of neurosteroid production plays a role in the pathophysiology of stress and stress-related psychiatric disorders, including mood and anxiety disorders. In this paper, we review the mechanisms of neurosteroid action in brain with an emphasis on those neurosteroids that potently modulate the function of GABA(A) receptors. We then discuss evidence indicating a role for GABA and neurosteroids in stress and depression, and focus on potential strategies that can be used to manipulate CNS neurosteroid synthesis and function for therapeutic purposes.
Collapse
|
16
|
Krishnan K, Manion BD, Taylor A, Bracamontes J, Steinbach JH, Reichert DE, Evers AS, Zorumski CF, Mennerick S, Covey DF. Neurosteroid analogues. 17. Inverted binding orientations of androsterone enantiomers at the steroid potentiation site on γ-aminobutyric acid type A receptors. J Med Chem 2012; 55:1334-45. [PMID: 22191644 DOI: 10.1021/jm2014925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantiomer pair androsterone and ent-androsterone are positive allosteric modulators of γ-aminobutyric acid (GABA) type A receptors. Each enantiomer was shown to bind at the same receptor site. Binding orientations of the enantiomers at this site were deduced using enantiomer pairs containing OBn substituents at either C-7 or C-11. 11β-OBn-substituted steroids and 7α-OBn-substituted ent-steroids potently displace [(35)S]-tert-butylbicyclophosphorothionate, augment GABA currents, and anesthetize tadpoles. In contrast, 7β-OBn-substituted steroids and 11α-OBn-substituted ent-steroids have diminished actions. The results suggest that the binding orientations of the active analogues are inverted relative to each other with the 7α- and 11β-substituents similarly located on the edges of the molecules not in contact with the receptor surface. Analogue potentiation of the GABA current was abrogated by an α(1) subunit Q241L mutation, indicating that the active analogues act at the same sites in α(1)β(2)γ(2L) receptors previously associated with positive neurosteroid modulation.
Collapse
Affiliation(s)
- Kathiresan Krishnan
- Department of Developmental Biology, Washington University, St. Louis School of Medicine, St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Structural studies of the actions of anesthetic drugs on the γ-aminobutyric acid type A receptor. Anesthesiology 2012; 115:1338-48. [PMID: 21881491 DOI: 10.1097/aln.0b013e3182315d93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The γ-aminobutyric acid type A receptor is the major transmitter-gated inhibitory channel in the central nervous system. The receptor is a target for anesthetics, anticonvulsants, anxiolytics, and sedatives whose actions facilitate the flow of chloride ions through the channel and enhance the inhibitory tone in the brain. Both the kinetic and structural aspects of the actions of modulators of the γ-aminobutyric acid type A receptor are of great importance to understanding the molecular mechanisms of general anesthesia. In this review, the structural rearrangements that take place in the γ-aminobutyric acid type A receptor during channel activation and modulation are described, focusing on data obtained using voltage-clamp fluorometry. Voltage-clamp fluorometry entails the binding of an environmentally sensitive fluorophore molecule to a site of interest in the receptor, and measurement of changes in the fluorescence signal resulting from activation- or modulation-elicited structural changes. Detailed investigations can provide a map of structural changes that underlie or accompany the functional effects of modulators.
Collapse
|
18
|
Bracamontes J, McCollum M, Esch C, Li P, Ann J, Steinbach JH, Akk G. Occupation of either site for the neurosteroid allopregnanolone potentiates the opening of the GABAA receptor induced from either transmitter binding site. Mol Pharmacol 2011; 80:79-86. [PMID: 21498656 PMCID: PMC3127533 DOI: 10.1124/mol.111.071662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/13/2011] [Indexed: 11/22/2022] Open
Abstract
Potentiating neuroactive steroids are potent and efficacious modulators of the GABA(A) receptor that act by allosterically enhancing channel activation elicited by GABA. Steroids interact with the membrane-spanning domains of the α subunits of the receptor, whereas GABA binds to pockets in the interfaces between β and α subunits. Steroid interaction with a single site is known to be sufficient to produce potentiation, but it is not clear whether effects within the same β-α pair mediate potentiation. Here, we have investigated whether the sites for GABA and steroids are functionally linked (i.e., whether the occupancy of a steroid site selectively affects activation elicited by GABA binding to the transmitter binding site within the same β-α pair). For that, we used receptors formed of mutated concatenated subunits to selectively eliminate one of the two GABA sites and one of the two steroid sites. The data demonstrate that receptors containing a single functional GABA site are potentiated by the neurosteroid allopregnanolone regardless of whether the steroid interacts with the α subunit from the same or the other β-α pair. We conclude that steroids potentiate the opening of the GABA(A) receptor induced by either agonist binding site.
Collapse
Affiliation(s)
- John Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Tierney ML. Insights into the biophysical properties of GABA(A) ion channels: modulation of ion permeation by drugs and protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:667-73. [PMID: 21126507 DOI: 10.1016/j.bbamem.2010.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 01/10/2023]
Abstract
The fundamental properties of ion channels assure their selectivity for a particular ion, its rapid permeation through a central pore and that such electrical activity is modulated by factors that control the opening and closing (gating) of the channel. All cell types possess ion channels and their regulated flux of ions across the membrane play critical roles in all steps of life. An ion channel does not act alone to control cell excitability but rather forms part of larger protein complexes. The identification of protein interaction partners of ion channels and their influence on both the fundamental biophysical properties of the channel and its expression in the membrane are revealing the many ways in which electrical activity may be regulated. Highlighted here is the novel use of the patch clamp method to dissect out the influence of protein interactions on the activity of individual GABA(A) receptors. The studies demonstrate that ion conduction is a dynamic property of a channel and that protein interactions in a cytoplasmic domain underlie the channel's ability to alter ion permeation. A structural model describing a reorganisation of the conserved cytoplasmic gondola domain and the influence of drugs on this process are presented.
Collapse
Affiliation(s)
- M Louise Tierney
- Membrane Physiology and Ion Channel Signaling Group, The John Curtin School of Medical Research, Building 54, Garran Road, The Australian National University, Canberra 0200, Australia.
| |
Collapse
|