1
|
van der Walt MM, Smith AP. A novel hypothesis-generating computational workflow utilizing reverse pharmacophore mapping-A drug repurposing perspective of istradefylline towards major depressive disorder. Br J Pharmacol 2025; 182:596-615. [PMID: 39406391 DOI: 10.1111/bph.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Drug repurposing (DR) offers a compelling alternative to traditional drug discovery's lengthy, resource-intensive process. DR is the process of identifying alternative clinical applications for pre-approved drugs as a low-risk and low-cost strategy. Computational approaches are crucial during the early hypothesis-generating stage of DR. However, 'large-scale' data retrieval remains a significant challenge. A computational workflow addressing such limitations might improve hypothesis generation, ultimately benefit patients and advance DR research. EXPERIMENTAL APPROACH We introduce a novel computational workflow (combining free-accessible computational platforms) to provide 'proof-of-concept' of the pre-approved drug's suitability for repurposing. Three key phases are included: target fishing (via reverse pharmacophore mapping), target identification (via disease- and drug-target pathway identification) and retrospective literature and drug-like analysis (via in silico ADMET properties determination). Istradefylline is a Parkinson's disease-approved drug with literature-attributed antidepressant properties remaining unclear. Practically applied, istradefylline's antidepressant activity was assessed in the context of major depressive disorder (MDD). KEY RESULTS Data mining aided by target identification resulted in istradefylline potentially representing a novel antidepressant drug class. Retrieved drug targets (KYNU, MAO-B, ALOX12 and PLCB2) associated with selected MDD pathways (tryptophan metabolism and serotonergic synapse) generated a hypothesis that istradefylline increased extracellular 5-HT levels (MAO-B inhibition) and reduced inflammation (KYNU, ALOX12 and PLCB2 inhibition). CONCLUSION AND IMPLICATIONS The practically applied workflow's generated hypothesis aligns with known experimental data, validating the effectiveness of this novel computational workflow. It is a low-risk and low-cost DR computational tool providing a bird's-eye view for exploring alternative clinical applications of pre-approved drugs.
Collapse
Affiliation(s)
- Mietha Magdalena van der Walt
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Arnold Petrus Smith
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
3
|
Wang M, Yan X, Li Y, Li Q, Xu Y, Huang J, Gan J, Yang W. Association between plasma polyunsaturated fatty acids and depressive among US adults. Front Nutr 2024; 11:1342304. [PMID: 38544754 PMCID: PMC10965719 DOI: 10.3389/fnut.2024.1342304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Depression is associated with greater functional impairment and high societal costs than many other mental disorders. Research on the association between plasma polyunsaturated fatty acids (PUFAs) levels and depression have yielded inconsistent results. OBJECTIVE To evaluate whether plasma n-3 and n-6 PUFAs levels are associated with depression in American adults. METHODS A cross-sectional study included 2053 adults (aged ≥20 y) in the National Health and Nutrition Examination Survey (NHANES), 2011-2012. The level of plasma n-3 and n-6 PUFAs were obtained for analysis. Self-reported Patient Health Questionnaire-9 (PHQ-9) was used to identify the depression status. Binary logistic regression analysis was performed to evaluate the association between quartiles of plasma n-3 and n-6 PUFAs and depression after adjustments for confounders. RESULTS The study of 2053 respondents over 20 years of age with a weighted depression prevalence of 7.29% comprised 1,043 men (weighted proportion, 49.13%) and 1,010 women (weighted, 50.87%), with a weighted mean (SE) age of 47.58 (0.67) years. Significantly increased risks of depression over non-depression were observed in the third quartiles (OR = 1.65, 95% CI = 1.05-2.62) for arachidonic acid (AA; 20:4n-6); the third quartiles (OR = 2.20, 95% CI = 1.20-4.05) for docosatetraenoic acid (DTA; 22:4n-6); the third (OR = 2.33, 95% CI = 1.34-4.07), and highest quartiles (OR = 1.83, 95% CI = 1.03-3.26) for docosapentaenoic acid (DPAn-6; 22:5n-6); and the third (OR = 2.18, 95% CI = 1.18-4.03) and highest quartiles (OR = 2.47, 95% CI = 1.31-4.68) for docosapentaenoic acid (DPAn-3; 22:5n-3); the second (OR = 2.13, 95% CI = 1.24-3.66), third (OR = 2.40, 95% CI = 1.28-4.50), and highest quartiles (OR = 2.24, 95% CI = 1.08-4.69) for AA/docosahexaenoic acid (DHA; 22:6n-3) ratio compared with the lowest quartile after adjusting for confounding factors. CONCLUSION Higher plasma levels of AA, DTA, DPAn-6, DPAn-3 PUFAs, and AA/DHA ratio may be potential risk factors for depression in US adults.
Collapse
Affiliation(s)
- Man Wang
- Department of Nutrition and Food Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Yan
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yanmei Li
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Qian Li
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingxia Xu
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jitian Huang
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Juan Gan
- Guangzhou Baiyun District Maternal and Childcare Hospital, Guangzhou, Guangdong Province, China
| | - Wenhan Yang
- Department of Nutrition and Food Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Chen P, Wang C, Gong Q, Chai Y, Chen Y, Song C, Wu Y, Wang L. Alterations of endogenous pain-modulatory system of the cerebral cortex in the neuropathic pain. iScience 2023; 26:106668. [PMID: 37168579 PMCID: PMC10165265 DOI: 10.1016/j.isci.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Neuropathic pain (NeP) remains a significant clinical challenge owing to insufficient awareness of its pathological mechanisms. We elucidated the aberrant metabolism of the cerebral cortex in NeP induced by the chronic constriction injury (CCI) using metabolomics and proteomics analyses. After CCI surgery, the values of MWT and TWL markedly reduced and maintained at a low level. CCI induced the significant dysregulation of 57 metabolites and 31 proteins in the cerebral cortex. Integrative analyses showed that the differentially expressed metabolites and proteins were primarily involved in alanine, aspartate and glutamate metabolism, GABAergic synapse, and retrograde endocannabinoid signaling. Targeted metabolomics and western blot analysis confirmed the alterations of some key metabolites and proteins in endogenous pain-modulatory system. In conclusion, our study revealed the alterations of endocannabinoids system and purinergic system in the CCI group, and provided a novel perspective on the roles of endogenous pain-modulatory system in the pathological mechanisms of NeP.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
- Corresponding author
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yunzhi Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yuanhua Wu
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
- Corresponding author
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
- Corresponding author
| |
Collapse
|
5
|
Bu Q, Zhang J, Guo X, Feng Y, Yan H, Cheng W, Feng Z, Cao M. The antidepressant effects and serum metabonomics of bifid triple viable capsule in a rat model of chronic unpredictable mild stress. Front Nutr 2022; 9:947697. [PMID: 36185696 PMCID: PMC9520780 DOI: 10.3389/fnut.2022.947697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Probiotics have shown potential antidepressant effects. This study evaluated the effect and probable mechanisms of bifid triple viable capsules (BTVCs) on a rat model of chronic unpredictable mild stress (CUMS). Materials and methods Rats were randomly divided into Normal, CUMS model, fluoxetine hydrochloride (FLX), BTVCs, and FLX+BTVCs groups. Depressive-like behaviours, pathological changes in the hippocampus, changes in serum metabolites and potential biomarkers, and metabolic pathways were detected via behavioural tests, haematoxylin-eosin staining, nissl staining, non-targetted metabolomics, and ingenuity pathway analysis (IPA). Results The rats displayed depressive-like behaviours after CUMS exposure, but BTVCs ameliorated the depressive-like behaviours. In addition, the pathological results showed that the hippocampal tissue was damaged in rats after CUMS exposure and that the damage was effectively alleviated by treatment with BTVCs. A total of 20 potential biomarkers were identified. Treatment with BTVCs regulated D-phenylalanine, methoxyeugenol, (±)-myristoylcarnitine, 18:3 (6Z, 9Z, 12Z) /P-18:1 (11Z), propionyl-L-carnitine, and arachidonic acid (AA) concentrations, all compounds that are involved with biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, linoleic acid metabolism and AA metabolism. The IPA demonstrated that endothelin-1 signalling and cyclic adenosine monophosphate response element binding protein (CREB) signalling in neurons may be involved in the development of depression. Conclusion Our findings suggest that BTVCs can alleviate depressive-like behaviours, restore damage to the hippocampus in CUMS rats and regulate serum metabolism, which may be related to endothelin-1 signalling or CREB signalling in neurons.
Collapse
Affiliation(s)
- Qinpeng Bu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Jingkai Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiang Guo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yifei Feng
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Huan Yan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weimin Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Zhitao Feng,
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Meiqun Cao,
| |
Collapse
|
6
|
Zhao D, Zhang J, Zhu Y, He C, Fei W, Yue N, Wang C, Wang L. Study of Antidepressant-Like Effects of Albiflorin and Paeoniflorin Through Metabolomics From the Perspective of Cancer-Related Depression. Front Neurol 2022; 13:828612. [PMID: 35873784 PMCID: PMC9304767 DOI: 10.3389/fneur.2022.828612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mental health has become a new challenge in cancer treatment, with a high prevalence of depression in patients with cancer. Albiflorin (AF) and paeoniflorinn (PF) are isomers extracted from the root of Paeoniae Radix Alba (Baishao in Chinese), belonging to the monoterpene glycosides, and multiple studies have been conducted on their antidepression and anti-cancer effects. However, the effects of AF and PF on cancer-related depression are unclear. Therefore, the current study aims to investigate whether the two isomers are able to exert antidepressant-like effects and understand the underlying mechanisms in a rat model, established by combining irradiation with chronic restraint stress and solitary confinement. Our results demonstrate a significant regulation of AF and PF in the pharmacodynamic index, including the peripheral blood, organ index, behavioral traits, and HPA axis, relative to control rats. In serum and cerebral cortex metabonomics analysis, AF and PF showed a significantly restorative trend in abnormal biomarkers and regulating ether lipid metabolism, alanine, aspartate, glutamate metabolism, tryptophan metabolism, carnitine metabolism, arachidonic acid metabolism, arginine and proline metabolism pathway. Eight potential biomarkers were further screened by means of receiver operating characteristic (ROC) analysis. The data indicate that AF and PF could effectively ameliorate a depression-like state in the model rats, and the mechanism may be associated with the regulation of the neuroendocrine immune system and disrupted metabolic pathways. Further experiments are warranted to comprehensively evaluate the antidepressant effects of AF and PF in cancer-related depression. This study provides a better insight into the action mechanisms of antidepression of TCM, and provides a new perspective for the therapy of cancer-related depression.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Jianjun Zhang
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenglong Wang
- Ethnic Medicine Characteristic Diagnosis and Treatment Center, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang
| |
Collapse
|
7
|
Oberlin S, Nkiliza A, Parks M, Evans JE, Klimas N, Keegan AP, Sullivan K, Krengel MH, Mullan M, Crawford F, Abdullah L. Sex-specific differences in plasma lipid profiles are associated with Gulf War Illness. J Transl Med 2022; 20:73. [PMID: 35123492 PMCID: PMC8817550 DOI: 10.1186/s12967-022-03272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Nearly 250,000 veterans from the 1990–1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. Methods Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. Results An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. Conclusion Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03272-3.
Collapse
|
8
|
Futokoro R, Hijioka M, Arata M, Kitamura Y. Lipoxin A4 Receptor Stimulation Attenuates Neuroinflammation in a Mouse Model of Intracerebral Hemorrhage. Brain Sci 2022; 12:brainsci12020162. [PMID: 35203926 PMCID: PMC8869920 DOI: 10.3390/brainsci12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is caused by the rupture of blood vessels in the brain. The excessive activation of glial cells and the infiltration of numerous inflammatory cells are observed during bleeding. Thrombin is a key molecule that triggers neuroinflammation in the ICH brain. In this study, we focused on lipoxin A4 (LXA4), an arachidonic acid metabolite that has been reported to suppress inflammation and cell migration. LXA4 and BML-111, an agonist of the LXA4 receptor/formyl peptide receptor 2 (ALX/FPR2), suppressed microglial activation; LXA4 strongly inhibited the migration of neutrophil-like cells in vitro. ALX/FPR2 was expressed on neutrophils in the ICH mouse brain and the daily administration of BML-111 attenuated the motor coordination dysfunction and suppressed the production of proinflammatory cytokines in the ICH mouse brain. On the other hand, BML-111 did not show a significant reduction in the number of microglia and neutrophils. These results suggest that systemic administration of ALX/FPR2 agonists may suppress the neuroinflammatory response of microglia and neutrophils without a change in cell numbers. Additionally, their combination with molecules that reduce cell numbers, such as modulators of leukotriene B4 signaling, may be required in future studies.
Collapse
Affiliation(s)
- Risa Futokoro
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Masanori Hijioka
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Correspondence: ; Tel.: +81-52-853-8196
| | - Moe Arata
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
| |
Collapse
|
9
|
Jain R, Larsuphrom P, Degremont A, Latunde‐Dada GO, Philippou E. Association between vegetarian and vegan diets and depression: A systematic review. NUTR BULL 2022; 47:27-49. [DOI: 10.1111/nbu.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Rishika Jain
- Department of Nutrition and Dietetics School of Life Course and Population Sciences King's College London London UK
| | - Phureephat Larsuphrom
- Department of Nutrition and Dietetics School of Life Course and Population Sciences King's College London London UK
| | - Alexia Degremont
- Department of Nutrition and Dietetics School of Life Course and Population Sciences King's College London London UK
| | | | - Elena Philippou
- Department of Nutrition and Dietetics School of Life Course and Population Sciences King's College London London UK
- Department of Life and Health Sciences University of Nicosia Nicosia Cyprus
| |
Collapse
|
10
|
Tylek K, Trojan E, Leśkiewicz M, Regulska M, Bryniarska N, Curzytek K, Lacivita E, Leopoldo M, Basta-Kaim A. Time-Dependent Protective and Pro-Resolving Effects of FPR2 Agonists on Lipopolysaccharide-Exposed Microglia Cells Involve Inhibition of NF-κB and MAPKs Pathways. Cells 2021; 10:cells10092373. [PMID: 34572022 PMCID: PMC8472089 DOI: 10.3390/cells10092373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Prolonged or excessive microglial activation may lead to disturbances in the resolution of inflammation (RoI). The importance of specialized pro-resolving lipid mediators (SPMs) in RoI has been highlighted. Among them, lipoxins (LXA4) and aspirin-triggered lipoxin A4 (AT-LXA4) mediate beneficial responses through the activation of N-formyl peptide receptor-2 (FPR2). We aimed to shed more light on the time-dependent protective and anti-inflammatory impact of the endogenous SPMs, LXA4, and AT-LXA4, and of a new synthetic FPR2 agonist MR-39, in lipopolysaccharide (LPS)-exposed rat microglial cells. Our results showed that LXA4, AT-LXA4, and MR-39 exhibit a protective and pro-resolving potential in LPS-stimulated microglia, even if marked differences were apparent regarding the time dependency and efficacy of inhibiting particular biomarkers. The LXA4 action was found mainly after 3 h of LPS stimulation, and the AT-LXA4 effect was varied in time, while MR-39′s effect was mainly observed after 24 h of stimulation by endotoxin. MR-39 was the only FPR2 ligand that attenuated LPS-evoked changes in the mitochondrial membrane potential and diminished the ROS and NO release. Moreover, the LPS-induced alterations in the microglial phenotype were modulated by LXA4, AT-LXA4, and MR-39. The anti-inflammatory effect of MR-39 on the IL-1β release was mediated through FPR2. All tested ligands inhibited TNF-α production, while AT-LXA4 and MR-39 also diminished IL-6 levels in LPS-stimulated microglia. The favorable action of LXA4 and MR-39 was mediated through the inhibition of ERK1/2 phosphorylation. AT-LXA4 and MR39 diminished the phosphorylation of the transcription factor NF-κB, while AT-LXA4 also affected p38 kinase phosphorylation. Our results suggest that new pro-resolving synthetic mediators can represent an attractive treatment option for the enhancement of RoI, and that FPR2 can provide a perspective as a target in immune-related brain disorders.
Collapse
Affiliation(s)
- Kinga Tylek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
| | - Enza Lacivita
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Marcello Leopoldo
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.); (M.R.); (N.B.); (K.C.)
- Correspondence: ; Tel.: +48-12-662-32-73
| |
Collapse
|
11
|
The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Exhibits Anti-Inflammatory Activity in LPS-Stimulated Organotypic Hippocampal Cultures. Cells 2021; 10:cells10061524. [PMID: 34204273 PMCID: PMC8235773 DOI: 10.3390/cells10061524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2−/− mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS). Higher LPS-induced cytokine expression and basal release were observed in KO FPR2 cultures than in WT cultures, suggesting that a lack of FPR2 enhances the OHCs response to inflammatory stimuli. Pretreatment with MR-39 abolished some of the LPS-induced changes in the expression of genes related to the M1/M2 phenotypes (including Il-1β, Il-6, Arg1, Il-4, Cd74, Fizz and Cx3cr1) and TNF-α, IL-1β and IL-4 release in tissue derived from WT but not KO mice. Receptor specificity was confirmed by adding the FPR2 antagonist WRW4, which abolished the abovementioned effects of MR-39. Further biochemical data showed an increase in the phospho-p65/total p65 ratio after LPS stimulation in hippocampal tissues from both WT and KO mice, and MR-39 only reversed this effect on WT OHCs. LPS also increased TRAF6 levels, which are critical for the TLR4-mediated NF-κB pro-inflammatory responses. MR-39 attenuated the LPS-evoked increase in the levels of the NLRP3 and caspase-1 proteins in WT but not KO hippocampal cultures. Since NLRP3 may be involved in the pyroptosis, a lytic type of programmed cell death in which the main role is played by Gasdermin D (GSDMD), we examined the effects of LPS and/or MR-39 on the GSDMD protein level. LPS only increased GSDMD production in the WT tissues, and this effect was ameliorated by MR-39. Collectively, this study indicates that the new FPR2 agonist efficiently abrogates LPS-induced neuroinflammation in an ex vivo model, as evidenced by a decrease in pro-inflammatory cytokine expression and release as well as the downregulation of NLRP3 inflammasome-related pathways.
Collapse
|
12
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Lopez PF, Caruso CM, Lasaga M, García CI, Paz C, Maloberti PM. Regulation and role of Acyl-CoA synthetase 4 in glial cells. J Steroid Biochem Mol Biol 2021; 208:105792. [PMID: 33246155 DOI: 10.1016/j.jsbmb.2020.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.
Collapse
Affiliation(s)
- Melina A Dattilo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Lucia M Herrera
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G Prada
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula F Lopez
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carla M Caruso
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Corina I García
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Paula M Maloberti
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Godhamgaonkar AA, Wadhwani NS, Joshi SR. Exploring the role of LC-PUFA metabolism in pregnancy complications. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102203. [PMID: 33227645 DOI: 10.1016/j.plefa.2020.102203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/09/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during pregnancy plays a significant role in growth and development of the placenta and influencing pregnancy outcome. Suboptimal nutritional status during early gestational period compromises the normal course of pregnancy leading to adverse maternal and fetal outcomes. Omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFA) are important for the growth and development of the placenta. Maternal fatty acids and their metabolites influence the normal course of pregnancy by regulating cell growth and development, cell signaling, regulate angiogenesis, modulate inflammatory responses and influence various structural and functional processes. Alterations in LC-PUFA and their metabolites may result in inadequate spiral artery remodeling or placental angiogenesis leading to structural and functional deficiency of the placenta which contributes to several pregnancy complications like preeclampsia, gestational diabetes mellitus, intrauterine growth restriction, and results in adverse birth outcomes. In this review, we summarize studies examining the role of fatty acids and their metabolites in pregnancy. We also discuss the possible molecular mechanisms through which LC-PUFA influences placental growth and development. Studies have demonstrated that omega-3 fatty acid supplementation lowers the incidence of preterm births, but its effect on reducing pregnancy complications are inconclusive.
Collapse
Affiliation(s)
- Aditi A Godhamgaonkar
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Nisha S Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India.
| |
Collapse
|