1
|
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C, Campiglia P, Bertamino A, Giofrè SV, Ostacolo C, Iraci N. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective. Molecules 2024; 29:2940. [PMID: 38931004 PMCID: PMC11206332 DOI: 10.3390/molecules29122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rita Turcio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Liu R, Sun L, Wang Y, Wang Q, Wu J. New use for an old drug: quinidine in KCNT1-related epilepsy therapy. Neurol Sci 2023; 44:1201-1206. [PMID: 36437393 DOI: 10.1007/s10072-022-06521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
KCNT1 has been known to encode a subunit of the tetrameric sodium activated potassium channel (KNa1.1). Pathogenic variants of KCNT1, especially gain-of-function (GOF) variants, are associated with multiple epileptic disorders which are often refractory to conventional anti-seizure medications and summarized as KCNT1-related epilepsy. Although the detailed pathogenic mechanisms of KCNT1-related epilepsy remain unknown, increasing studies attempt to find effective medications for those patients by utilizing quinidine to inhibit hyperexcitable KNa1.1. However, it has been shown that controversial outcomes among studies and partial success in some individuals may be due to multiple factors, such as poor blood-brain barrier (BBB) penetration, mutation-dependent manner, phenotype-genotype associations, and rational therapeutic schedule. In recent years, with higher resolution of KNa1.1 structure in different activation states and advanced synthetic techniques, it improves the process performance of therapy targeting at KNa1.1 channel to achieve more effective outcomes. Here, we systematically reviewed the study history of quinidine on KCNT1-related epilepsy and its corresponding therapeutic effects. Then, we analyzed and summarized the possible causes behind the different outcomes of the application of quinidine. Finally, we outlooked the recent advances in precision medicine treatment for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450008, Henan, China
| | - Yunfu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|