1
|
Chen J, Zhu J, Bao H, Tang L, Li B, Chen Z, Zhang Y, Hu Q. Challenging the Safety Threshold: Neurotoxicity in Bipolar Disorder Treatment with Lithium at Therapeutic Serum Levels. PSYCHIAT CLIN PSYCH 2025; 35:81-87. [PMID: 40224945 PMCID: PMC11992939 DOI: 10.5152/pcp.2025.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/18/2024] [Indexed: 04/15/2025] Open
Abstract
Bipolar disorder is a complex mental disorder that often requires long-term medication management. Lithium carbonate is widely used to prevent and treat the recurrence of bipolar disorder. However, even with normal serum lithium levels, some rare but serious side effects may occur. This case report describes a 42-year-old female patient with bipolar disorder who experienced "electrical shock-like" convulsions after taking lithium carbonate sustained-release tablets, despite having normal serum lithium concentrations. The patient had a history of emotional instability for 27 years, and no obvious psychotic symptoms such as hallucinations or delusions were found upon psychiatric examination at admission. On the 33rd day of medication, the patient began to experience frequent rapid convulsions in the head, neck, and upper body. Considering the possibility of drug side effects, lithium carbonate was discontinued, and the convulsions subsequently subsided. Electroencephalogram (EEG) examination showed no abnormalities. After 10 days of treatment, the convulsions had essentially disappeared. This case reminds clinicians that even with normal serum lithium levels, toxic symptoms may occur, and close monitoring of the patient's clinical manifestations and serum lithium levels is essential. Additionally, poor diet and reduced sodium intake may increase the risk of lithium toxicity, so these factors should also be taken into consideration.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Jun Zhu
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Hehua Bao
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Lijuan Tang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Benhan Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Zixuan Chen
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Yanli Zhang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Qiang Hu
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| |
Collapse
|
2
|
Rehman Z, Alqahtani F, Ashraf W, Rasool MF, Muneeb Anjum SM, Ahmad T, Alsanea S, Alasmari F, Imran I. Neuroprotective potential of topiramate, pregabalin and lacosamide combination in a rat model of acute SE and intractable epilepsy: Perspectives from electroencephalographic, neurobehavioral and regional degenerative analysis. Eur J Pharmacol 2024; 978:176792. [PMID: 38950834 DOI: 10.1016/j.ejphar.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
The lithium-pilocarpine model is commonly used to recapitulate characteristics of human intractable focal epilepsy. In the current study, we explored the impact of topiramate (TPM) alone and in combination with pregabalin and lacosamide administration for 6 weeks on the evolution of spontaneous recurrent seizures (SRS) and disease-modifying potential on associated neuropsychiatric comorbidities. In addition, redox impairments and neurodegeneration in hippocampus regions vulnerable to temporal lobe epilepsy (TLE) were assessed by cresyl violet staining. Results revealed that acute electrophysiological (EEG) profiling of the ASD cocktail markedly halted sharp ictogenic spikes as well as altered dynamics of brain wave oscillations thus validating the need for polytherapy vs. monotherapy. In TLE animals, pharmacological intervention for 6 weeks with topiramate 10 mg/kg in combination with PREG and LAC at the dose of 20 mg/kg exhibited marked protection from SRS incidence, improved body weight, offensive aggression, anxiety-like behavior, cognitive impairments, and depressive-like behavior (p < 0.05). Moreover, combination therapy impeded redox impairments as evidenced by decreased MDA and AchE levels and increased activity of antioxidant SOD, GSH enzymes. Furthermore, polytherapy rescued animals from SE-induced neurodegeneration with increased neuronal density in CA1, CA3c, CA3ab, hilus, and granular cell layer (GCL) of the dentate gyrus. In conclusion, early polytherapy with topiramate in combination with pregabalin and lacosamide prompted synergy and prevented epileptogenesis with associated psychological and neuropathologic alterations.
Collapse
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, 75270, Pakistan
| | - Tanveer Ahmad
- Institut pour L'Avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, France
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
3
|
Soto-Angona Ó, Fortea A, Fortea L, Martínez-Ramírez M, Santamarina E, López FJG, Knudsen GM, Ona G. Do classic psychedelics increase the risk of seizures? A scoping review. Eur Neuropsychopharmacol 2024; 85:35-42. [PMID: 38917636 DOI: 10.1016/j.euroneuro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024]
Abstract
Seizures are a concerning adverse event frequently associated with the use of psychedelics, and hence, studies involving these substances tend to exclude patients with past history of epilepsy. This is especially relevant because epileptic seizures are markedly increased in the population suffering from mental disorders, and psychedelic assisted therapy is being researched as a promising treatment for several of them. To determine the extent of the current literature on the relationship between classic psychedelics and seizures, a scoping review was performed using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews). The search was conducted in PubMed, Web of Science, Google scholar, LILACS and Scielo, and both animal and human models were included. A total of 16 publications on humans, and 11 on animals, were found. The results are heterogeneous, but globally suggest that psychedelics may not increase the risk of seizures in healthy individuals or animals in the absence of other drugs. However, concomitant use of other substances or drugs, such as kambo or lithium, could increase the risk of seizures. Additionally, these conclusions are drawn from data lacking sufficient external validity, so they should be interpreted with caution. Future paths for research and a summary on possible neurobiological underpinnings that might clarify the relationship between classical psychedelics and seizures are also provided.
Collapse
Affiliation(s)
- Óscar Soto-Angona
- Sociedad Española de Medicina Psicodélica (SEMPsi), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Barcelona, Spain; Fundació Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Adriana Fortea
- Sociedad Española de Medicina Psicodélica (SEMPsi), Barcelona, Spain; Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic of Barcelona, Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Lydia Fortea
- Fundació Clínic per a la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain
| | - María Martínez-Ramírez
- Sociedad Española de Medicina Psicodélica (SEMPsi), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Estevo Santamarina
- Epilepsy Unit. Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | | | - Gite Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet and Dept. Clinical Medicine, University of Copenhagen, Denmark
| | - Genís Ona
- Sociedad Española de Medicina Psicodélica (SEMPsi), Barcelona, Spain; Fundació Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Universitat Rovira i Virgili, Medical Anthropology Research Center (MARC), Department of Anthropology, Philosophy and Social Work, Tarragona, Catalonia, Spain.
| |
Collapse
|
4
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Liang J, Yu M, Li Y, Zhao L, Wei Q. Glycogen synthase kinase-3: A potential immunotherapeutic target in tumor microenvironment. Biomed Pharmacother 2024; 173:116377. [PMID: 38442671 DOI: 10.1016/j.biopha.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Meng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
6
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
8
|
Indika NLR, Owens SC, Senarathne UD, Grabrucker AM, Lam NSK, Louati K, McGuinness G, Frye RE. Metabolic Approaches to the Treatment of Autism Spectrum Disorders. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:291-312. [DOI: 10.1007/978-3-031-42383-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|