1
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
2
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
3
|
Shen M, Zhang L, Chen C, Wei X, Ma Y, Ma Y. Investigating the causal relationship between immune cell and Alzheimer's disease: a mendelian randomization analysis. BMC Neurol 2024; 24:98. [PMID: 38500057 PMCID: PMC10946133 DOI: 10.1186/s12883-024-03599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Complex interactions between the immune system and the brain may affect neural development, survival, and function, with etiological and therapeutic implications for neurodegenerative diseases. However, previous studies investigating the association between immune inflammation and Alzheimer's disease (AD) have yielded inconsistent results. METHODS We applied Mendelian randomization (MR) to examine the causal relationship between immune cell traits and AD risk using genetic variants as instrumental variables. MR is an epidemiological study design based on genetic information that reduces the effects of confounding and reverse causation. We analyzed the causal associations between 731 immune cell traits and AD risk based on publicly available genetic data. RESULTS We observed that 5 immune cell traits conferred protection against AD, while 7 immune cell traits increased the risk of AD. These immune cell traits mainly involved T cell regulation, monocyte activation and B cell differentiation. Our findings suggest that immune regulation may influence the development of AD and provide new insights into potential targets for AD prevention and treatment. We also conducted various sensitivity analyses to test the validity and robustness of our results, which revealed no evidence of pleiotropy or heterogeneity. CONCLUSION Our research shows that immune regulation is important for AD and provides new information on potential targets for AD prevention and treatment. However, this study has limitations, including the possibility of reverse causality, lack of validation in independent cohorts, and potential confounding by population stratification. Further research is needed to validate and amplify these results and to elucidate the potential mechanisms of the immune cell-AD association.
Collapse
Affiliation(s)
- Min Shen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Linlin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaocen Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuning Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| | - Yuxia Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Bosco F, Guarnieri L, Rania V, Palma E, Citraro R, Corasaniti MT, Leo A, De Sarro G. Antiseizure Medications in Alzheimer's Disease from Preclinical to Clinical Evidence. Int J Mol Sci 2023; 24:12639. [PMID: 37628821 PMCID: PMC10454935 DOI: 10.3390/ijms241612639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Lorenza Guarnieri
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Rita Citraro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Antonio Leo
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Alves SS, de Oliveira JAC, Lazarini-Lopes W, Servilha-Menezes G, Grigório-de-Sant'Ana M, Del Vecchio F, Mazzei RF, Sousa Almeida S, da Silva Junior RMP, Garcia-Cairasco N. Audiogenic Seizures in the Streptozotocin-Induced Rat Alzheimer's Disease Model. J Alzheimers Dis 2023:JAD230153. [PMID: 37393501 DOI: 10.3233/jad-230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Willian Lazarini-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Flavio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|