1
|
Hamzyan Olia JB, Raman A, Hsu CY, Alkhayyat A, Nourazarian A. A comprehensive review of neurotransmitter modulation via artificial intelligence: A new frontier in personalized neurobiochemistry. Comput Biol Med 2025; 189:109984. [PMID: 40088712 DOI: 10.1016/j.compbiomed.2025.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The deployment of artificial intelligence (AI) is revolutionizing neuropharmacology and drug development, allowing the modulation of neurotransmitter systems at the personal level. This review focuses on the neuropharmacology and regulation of neurotransmitters using predictive modeling, closed-loop neuromodulation, and precision drug design. The fusion of AI with applications such as machine learning, deep-learning, and even computational modeling allows for the real-time tracking and enhancement of biological processes within the body. An exemplary application of AI is the use of DeepMind's AlphaFold to design new GABA reuptake inhibitors for epilepsy and anxiety. Likewise, Benevolent AI and IBM Watson have fast-tracked drug repositioning for neurodegenerative conditions. Furthermore, we identified new serotonin reuptake inhibitors for depression through AI screening. In addition, the application of Deep Brain Stimulation (DBS) settings using AI for patients with Parkinson's disease and for patients with major depressive disorder (MDD) using reinforcement learning-based transcranial magnetic stimulation (TMS) leads to better treatment. This review highlights other challenges including algorithm bias, ethical concerns, and limited clinical validation. Their proposal to incorporate AI with optogenetics, CRISPR, neuroprosthesis, and other advanced technologies fosters further exploration and refinement of precision neurotherapeutic approaches. By bridging computational neuroscience with clinical applications, AI has the potential to revolutionize neuropharmacology and improve patient-specific treatment strategies. We addressed critical challenges, such as algorithmic bias and ethical concerns, by proposing bias auditing, diverse datasets, explainable AI, and regulatory frameworks as practical solutions to ensure equitable and transparent AI applications in neurotransmitter modulation.
Collapse
Affiliation(s)
| | - Arasu Raman
- Faculty of Business and Communications, INTI International University, Putra Nilai, 71800, Malaysia
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Ahmad Alkhayyat
- Department of Computer Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Computer Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
2
|
Niu W, Feng Y, Li J, Xu S, Ma Z, Wang Y. Decoding vital variables in predicting different phases of suicide among young adults with childhood sexual abuse: a machine learning approach. Transl Psychiatry 2025; 15:158. [PMID: 40274813 PMCID: PMC12022041 DOI: 10.1038/s41398-025-03360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Young adults with childhood sexual abuse (CSA) are an especially vulnerable group to suicide. Suicide encompasses different phases, but for CSA survivors the salient factors precipitating suicide are rarely studied. In this study, from a progressive perspective of suicidal thoughts and behaviors (STB), we aim to identify distinct risk factors for predicting different stages of STB, i.e., suicidal ideation (SI), suicide plan (SP), and suicide attempt (SA), among young adults with CSA experience. Based on mental health profiles of 4,070 young adult CSA survivors from a cross-sectional survey, we constructed five random forest classification models to respectively classify high suicidality, SI, SP, and SA. The common crucial factors for predicting SI, SP, and SA included NSSI and depression. The special important predictors for SI included OCD, anxiety, PTSD, and social rhythm. Co-occurrence of other types of childhood abuse and traumatic events was a special important predictor for SP among participants with SI. Self-compassion was the most crucial factor in classifying SA from those with SI. Social rhythm, co-occurrence of other types of childhood abuse, domestic violence, fear of happiness, and self-compassion made specific contribution to the prediction of SI, SP, and SA. However, the random forest model failed to accurately classify SA from those with SP, which was consistent with existing research. Our findings highlighted the importance of identifying suicidal characteristics for specified interventions at different stages of suicide for young people with CSA experiences.
Collapse
Affiliation(s)
- Wenbang Niu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou, China
| | - Yi Feng
- Mental Health Center, Central University of Finance and Economics, Beijing, China
| | - Jiaqi Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou, China
| | - Shicun Xu
- Northeast Asian Research Center, Jilin University, Changchun, China
| | - Zhihao Ma
- Computational Communication Collaboratory, School of Journalism and Communication, Nanjing University, Nanjing, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou, China.
| |
Collapse
|
3
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Haga SB. Artificial intelligence, medications, pharmacogenomics, and ethics. Pharmacogenomics 2024; 25:611-622. [PMID: 39545629 DOI: 10.1080/14622416.2024.2428587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing various scientific and clinical disciplines including pharmacogenomics (PGx) by enabling the analysis of complex datasets and the development of predictive models. The integration of AI and ML with PGx has the potential to provide more precise, data-driven insights into new drug targets, drug efficacy, drug selection, and risk of adverse events. While significant effort to develop and validate these tools remain, ongoing advancements in AI technologies, coupled with improvements in data quality and depth is anticipated to drive the transition of these tools into clinical practice and delivery of individualized treatments and improved patient outcomes. The successful development and integration of AI-assisted PGx tools will require careful consideration of ethical, legal, and social issues (ELSI) in research and clinical practice. This paper explores the intersection of PGx with AI, highlighting current research and potential clinical applications, and ELSI including privacy, oversight, patient and provider knowledge and acceptance, and the impact on patient-provider relationship and new roles.
Collapse
Affiliation(s)
- Susanne B Haga
- Department of Medicine, Division of General Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Iannone A, Giansanti D. Breaking Barriers-The Intersection of AI and Assistive Technology in Autism Care: A Narrative Review. J Pers Med 2023; 14:41. [PMID: 38248742 PMCID: PMC10817661 DOI: 10.3390/jpm14010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
(Background) Autism increasingly requires a multidisciplinary approach that can effectively harmonize the realms of diagnosis and therapy, tailoring both to the individual. Assistive technologies (ATs) play an important role in this context and hold significant potential when integrated with artificial intelligence (AI). (Objective) The objective of this study is to analyze the state of integration of AI with ATs in autism through a review. (Methods) A review was conducted on PubMed and Scopus, applying a standard checklist and a qualification process. The outcome reported 22 studies, including 7 reviews. (Key Content and Findings) The results reveal an early yet promising interest in integrating AI into autism assistive technologies. Exciting developments are currently underway at the intersection of AI and robotics, as well as in the creation of wearable automated devices like smart glasses. These innovations offer substantial potential for enhancing communication, interaction, and social engagement for individuals with autism. Presently, researchers are prioritizing innovation over establishing a solid presence within the healthcare domain, where issues such as regulation and acceptance demand increased attention. (Conclusions) As the field continues to evolve, it becomes increasingly clear that AI will play a pivotal role in bridging various domains, and integrated ATs with AI are positioned to act as crucial connectors.
Collapse
Affiliation(s)
- Antonio Iannone
- CREA, Italian National Research Body, Via Ardeatina, 546, 00178 Roma, Italy
| | - Daniele Giansanti
- Centro Nazionale TISP, Istituto Superiore di Sanità; Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
6
|
Giansanti D. An Umbrella Review of the Fusion of fMRI and AI in Autism. Diagnostics (Basel) 2023; 13:3552. [PMID: 38066793 PMCID: PMC10706112 DOI: 10.3390/diagnostics13233552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 04/05/2024] Open
Abstract
The role of functional magnetic resonance imaging (fMRI) is assuming an increasingly central role in autism diagnosis. The integration of Artificial Intelligence (AI) into the realm of applications further contributes to its development. This study's objective is to analyze emerging themes in this domain through an umbrella review, encompassing systematic reviews. The research methodology was based on a structured process for conducting a literature narrative review, using an umbrella review in PubMed and Scopus. Rigorous criteria, a standard checklist, and a qualification process were meticulously applied. The findings include 20 systematic reviews that underscore key themes in autism research, particularly emphasizing the significance of technological integration, including the pivotal roles of fMRI and AI. This study also highlights the enigmatic role of oxytocin. While acknowledging the immense potential in this field, the outcome does not evade acknowledging the significant challenges and limitations. Intriguingly, there is a growing emphasis on research and innovation in AI, whereas aspects related to the integration of healthcare processes, such as regulation, acceptance, informed consent, and data security, receive comparatively less attention. Additionally, the integration of these findings into Personalized Medicine (PM) represents a promising yet relatively unexplored area within autism research. This study concludes by encouraging scholars to focus on the critical themes of health domain integration, vital for the routine implementation of these applications.
Collapse
Affiliation(s)
- Daniele Giansanti
- Centro Nazionale TISP, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|