1
|
Yadav-Samudrala BJ, Yadav AP, Patel RP, Fitting S. HIV-1 Tat protein alters medial prefrontal cortex neuronal activity and recognition memory. iScience 2025; 28:112075. [PMID: 40160418 PMCID: PMC11952812 DOI: 10.1016/j.isci.2025.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Despite advancements in combined antiretroviral therapy, human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) continue to affect 40%-50% of people living with HIV. While neuroimaging studies have revealed HIV-1-induced alterations in cortical networks and brain macrostructures, it still remains unclear how individual neurons in the medial prefrontal cortex (mPFC) are affected during recognition memory. Using in vivo calcium imaging in an HIV-1 transactivator of transcription (Tat) transgenic mouse model, we examined mPFC neuronal activity during a novel object recognition memory task. Our findings show that HIV Tat expression reduces overall neuronal activity in Tat(+) mice without altering the number of activated cells. Moreover, distinct neuronal subpopulations are up- and downmodulated in both Tat(-) and Tat(+) mice depending on object exploration. Importantly, familiarity-driven increases in mPFC activity were disrupted by HIV Tat expression. These findings enhance our understanding of HAND and may inform future pharmacological strategies aimed at restoring cognitive function.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aryan P. Yadav
- Department of Computer Science, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Rahul P. Patel
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Sivalingam K, Doke M, Khan MA, Samikkannu T. Influence of psychostimulants and opioids on epigenetic modification of class III histone deacetylase (HDAC)-sirtuins in glial cells. Sci Rep 2021; 11:21335. [PMID: 34716387 PMCID: PMC8556237 DOI: 10.1038/s41598-021-00836-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
Substance abuse affects the central nervous system (CNS) and remains a global health problem. Psychostimulants, such as cocaine and methamphetamine (METH), and opioids affect neuronal function and lead to behavioral impairments via epigenetic modification. Epigenetic changes occur via classical pathways, especially the class III histone deacetylase (HDAC)-sirtuin (SIRT) family, that act as cellular sensors to regulate energy homeostasis and coordinate cellular responses to maintain genome integrity. However, SIRT family (1-7)-associated neurodegeneration has not been elucidated in the context of energy metabolism. The present study examined the effects of psychostimulants, such as cocaine and METH, and opioids, such as morphine, on SIRT family (1-7) [class I, II, III and IV] expression and cellular translocation-mediated dysfunction in astrocytes and microglial cells. The "nootropic" drug piracetam played a preventative role against psychostimulant- and opioid-induced SIRT (1-7) expression in astrocytes. These results indicate that cocaine, METH, and morphine affected deacetylation and cellular function, and these changes were prevented by piracetam in astrocytes.
Collapse
Affiliation(s)
- Kalaiselvi Sivalingam
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Mansoor A Khan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA.
| |
Collapse
|
5
|
Sivalingam K, Cirino TJ, McLaughlin JP, Samikkannu T. HIV-Tat and Cocaine Impact Brain Energy Metabolism: Redox Modification and Mitochondrial Biogenesis Influence NRF Transcription-Mediated Neurodegeneration. Mol Neurobiol 2020; 58:490-504. [PMID: 32978730 DOI: 10.1007/s12035-020-02131-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
HIV infection and drugs of abuse induce oxidative stress and redox imbalance, which cause neurodegeneration. The mechanisms by which HIV infection and cocaine consumption affect astrocyte energy metabolism, and how this leads to neurodegenerative dysfunction, remain poorly understood. Presently, we investigated how oxidative injury causes the depletion of energy resources and glutathione synthetase (GSS), which in turn activates 5' AMP-activated protein kinase (AMPK), glycolytic enzymes, and mitochondrial biogenesis, finally resulting in nuclear factor erythroid (NRF) transcription in astrocytes. Both human primary astrocytes incubated with HIV-1 Tat protein in vitro and HIV-inducible Tat (iTat) mice exposed to cocaine showed decreased levels of GSS and increased superoxide dismutase (SOD) levels. These changes, in turn, significantly activated AMPK and raised the concentrations of several glycolytic enzymes, along with oxidative phosphorylation, the mitochondrial biogenesis of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) and mitochondrial transcription factor (TFAM), and Nrf1 and Nrf2 gene transcription and protein expression. Moreover, neurons exposed to HIV-1Tat/cocaine-conditioned media showed reductions in dendritic formation, spine density, and neuroplasticity compared with control neurons. These results suggest that redox inhibition of GSS altered AMPK activation and mitochondrial biogenesis to influence Nrf transcription. These processes are important components of the astrocyte signaling network regulating brain energy metabolism in HIV-positive cocaine users. In conclusion, HIV-1 Tat alters redox inhibition, thus increasing glycolytic metabolic profiles and mitochondrial biogenesis, leading to Nrf transcription, and ultimately impacting astrocyte energy resource and metabolism. Cocaine exacerbated these effects, leading to a worsening of neurodegeneration.
Collapse
Affiliation(s)
- Kalaiselvi Sivalingam
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA.
| |
Collapse
|
6
|
Menon M, Budhwar R, Shukla RN, Bankar K, Vasudevan M, Ranga U. The Signature Amino Acid Residue Serine 31 of HIV-1C Tat Potentiates an Activated Phenotype in Endothelial Cells. Front Immunol 2020; 11:529614. [PMID: 33101270 PMCID: PMC7546421 DOI: 10.3389/fimmu.2020.529614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
The natural cysteine to serine variation at position 31 of Tat in HIV-1C disrupts the dicysteine motif attenuating the chemokine function of Tat. We ask if there exists a trade-off in terms of a gain of function for HIV-1C Tat due to this natural variation. We constructed two Tat-expression vectors encoding Tat proteins discordant for the serine 31 residue (CS-Tat vs. CC-Tat), expressed the proteins in Jurkat cells under doxycycline control, and performed the whole transcriptome analysis to compare the early events of Tat-induced host gene expression. Our analysis delineated a significant enrichment of pathways and gene ontologies associated with the angiogenic signaling events in CS-Tat stable cells. Subsequently, we validated and compared angiogenic signaling events induced by CS- vs. CC-Tat using human umbilical vein endothelial cells (HUVEC) and the human cerebral microvascular endothelial cell line (hCMEC/D3). CS-Tat significantly enhanced the production of CCL2 from HUVEC and induced an activated phenotype in endothelial cells conferring on them enhanced migration, invasion, and in vitro morphogenesis potential. The ability of CS-Tat to induce the activated phenotype in endothelial cells could be of significance, especially in the context of HIV-associated cardiovascular and neuronal disorders. The findings from the present study are likely to help appreciate the functional significance of the SAR (signature amino acid residues) influencing the unique biological properties.
Collapse
Affiliation(s)
- Malini Menon
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | | | | | | | | | - Udaykumar Ranga
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
7
|
Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 2019; 136:104701. [PMID: 31837421 DOI: 10.1016/j.nbd.2019.104701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.
Collapse
Affiliation(s)
- Monray E Williams
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| | - Simo S Zulu
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders and Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Sagar V, Pilakka-Kanthikeel S, Martinez PC, Atluri VSR, Nair M. Common gene-network signature of different neurological disorders and their potential implications to neuroAIDS. PLoS One 2017; 12:e0181642. [PMID: 28792504 PMCID: PMC5549695 DOI: 10.1371/journal.pone.0181642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The neurological complications of AIDS (neuroAIDS) during the infection of human immunodeficiency virus (HIV) are symptomized by non-specific, multifaceted neurological conditions and therefore, defining a specific diagnosis/treatment mechanism(s) for this neuro-complexity at the molecular level remains elusive. Using an in silico based integrated gene network analysis we discovered that HIV infection shares convergent gene networks with each of twelve neurological disorders selected in this study. Importantly, a common gene network was identified among HIV infection, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and age macular degeneration. An mRNA microarray analysis in HIV-infected monocytes showed significant changes in the expression of several genes of this in silico derived common pathway which suggests the possible physiological relevance of this gene-circuit in driving neuroAIDS condition. Further, this unique gene network was compared with another in silico derived novel, convergent gene network which is shared by seven major neurological disorders (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Age Macular Degeneration, Amyotrophic Lateral Sclerosis, Vascular Dementia, and Restless Leg Syndrome). These networks differed in their gene circuits; however, in large, they involved innate immunity signaling pathways, which suggests commonalities in the immunological basis of different neuropathogenesis. The common gene circuits reported here can provide a prospective platform to understand how gene-circuits belonging to other neuro-disorders may be convoluted during real-time neuroAIDS condition and it may elucidate the underlying-and so far unknown-genetic overlap between HIV infection and neuroAIDS risk. Also, it may lead to a new paradigm in understanding disease progression, identifying biomarkers, and developing therapies.
Collapse
Affiliation(s)
- Vidya Sagar
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - S. Pilakka-Kanthikeel
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Paola C. Martinez
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - V. S. R. Atluri
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - M. Nair
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
9
|
Novel nanoformulation to mitigate co-effects of drugs of abuse and HIV-1 infection: towards the treatment of NeuroAIDS. J Neurovirol 2017; 23:603-614. [PMID: 28762183 DOI: 10.1007/s13365-017-0538-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/06/2017] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Drug abuse (e.g., methamphetamine-Meth or cocaine-Coc) is one of the major risk factors for becoming infected with HIV-1, and studies show that in combination, drug abuse and HIV-1 lead to significantly greater damage to CNS. To overcome these issues, we have developed a novel nanoformulation (NF) for drug-abusing population infected with HIV-1. In this work, a novel approach was developed for the co-encapsulation of Nelfinavir (Nel) and Rimcazole (Rico) using layer-by-layer (LbL) assembled magnetic nanoformulation for the cure of neuroAIDS. Developed NF was evaluated for blood-brain barrier (BBB) transmigration, cell uptake, cytotoxicity and efficacy (p24 assay) in HIV-1 infected primary astrocyte (HA) in presence or absence of Coc and Meth. Developed magnetic nanoformulation (NF) fabricated using the LbL approach exhibited higher amounts of drug loading (Nel and Rico) with 100% release of both the therapeutic agents in a sustained manner for 8 days. NF efficacy studies indicated a dose-dependent decrease in p24 levels in HIV-1-infected HA (~55%) compared to Coc + Meth treated (~50%). The results showed that Rico significantly subdued the effect of drugs of abuse on HIV infectivity. NF successfully transmigrated (38.8 ± 6.5%) across in vitro BBB model on the application of an external magnetic field and showed >90% of cell viability with efficient cell uptake. In conclusion, our proof of concept study revealed that sustained and concurrent release of sigma σ1 antagonist and anti-HIV drug from the developed novel sustained release NF can overcome the exacerbated effects of drugs of abuse in HIV infection and may solve the issue of medication adherence in the drug-abusing HIV-1 infected population.
Collapse
|
10
|
López SN, Rodríguez-Valentín M, Rivera M, Rodríguez M, Babu M, Cubano LA, Xiong H, Wang G, Kucheryavykh L, Boukli NM. HIV-1 Gp120 clade B/C induces a GRP78 driven cytoprotective mechanism in astrocytoma. Oncotarget 2017; 8:68415-68438. [PMID: 28978127 PMCID: PMC5620267 DOI: 10.18632/oncotarget.19474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023] Open
Abstract
HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential proliferation, cell survival and NeuroAIDS effects in human astrocytoma cells via the Unfolded Protein Response, an endoplasmic reticulum- based cytoprotective mechanism. The differential effect of gp120 clade B and C was evaluated using for the first time a Tandem Mass Tag isobaric labeling quantitative proteomic approach. Flow cytometry analyses were performed for cell cycle and cell death identification. Among the proteins differentiated by HIV-1 gp120 proteins figure cytoskeleton, oxidative stress, UPR markers and numerous glycolytic metabolism enzymes. Our results demonstrate that HIV-1 gp120 B induced migration, proliferative and protective responses granted by the expression of GRP78, while HIV-1 gp120 C induced the expression of key inflammatory and pro-apoptotic markers. These novel findings put forward the first evidence that GRP78 is a key player in HIV-1 clade B and C neuropathogenic discrepancies and can be used as a novel target for immunotherapies.
Collapse
Affiliation(s)
- Sheila N López
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Madeline Rodríguez-Valentín
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Mariela Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Maridaliz Rodríguez
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Center, University of Regina, Saskatchewan, Canada
| | - Luis A Cubano
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Nawal M Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| |
Collapse
|
11
|
Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103:202-217. [PMID: 26944096 PMCID: PMC4935582 DOI: 10.1016/j.addr.2016.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS.
Collapse
Key Words
- Anti-retroviral (ARV) therapy
- Blood–brain barrier (BBB)
- Bradykinin (PubChem CID: 439,201)
- CNS drug delivery
- Enfuvirtide (PubChem CID: 16,130,199), Lamivudine & Zidovudine (PubChem CID: 160,352)
- Ferrous oxide or iron (II) oxide (PubChem CID: 14,945)
- Foscarnet sodium (PubChem CID: 44,561)
- HIV monitoring
- HIV-1
- Magnetic nanoparticle
- Mannitol (PubChem CID: 6251)
- Nanotechnology
- Neopterin (PubChem CID: 4455)
- NeuroAIDS
- Pluronic-P85 (PubChem CID: 24,751)
- Saquinavir mesylate (PubChem CID: 60,934)
- Tenofovir disoproxil fumarate (PubChem CID: 6,398,764)
Collapse
Affiliation(s)
- Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain 2016; 9:57. [PMID: 27216740 PMCID: PMC4878083 DOI: 10.1186/s13041-016-0236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/06/2016] [Indexed: 01/02/2023] Open
Abstract
The human immunodeficiency virus (HIV) is a neurotropic virus. It induces neurotoxicity and subsequent brain pathologies in different brain cells. Addiction to recreational drugs remarkably affects the initiation of HIV infections and expedites the progression of acquired immunodeficiency syndrome (AIDS) associated neuropathogenesis. Symptoms of HIV-associated neurocognitive disorders (HAND) are noticed in many AIDS patients. At least 50 % of HIV diagnosed cases show one or other kind of neuropathological signs or symptoms during different stages of disease progression. In the same line, mild to severe neurological alterations are seen in at least 80 % autopsies of AIDS patients. Neurological illnesses weaken the connections between neurons causing significant altercations in synaptic plasticity. Synaptic plasticity alterations during HIV infection and recreational drug abuse are mediated by complex cellular phenomena involving changes in gene expression and subsequent loss of dendritic and spine morphology and physiology. New treatment strategies with ability to deliver drugs across blood-brain barrier (BBB) are being intensively investigated. In this context, magnetic nanoparticles (MNPs) based nanoformulations have shown significant potential for target specificity, drug delivery, drug release, and bioavailability of desired amount of drugs in non-invasive brain targeting. MNPs-based potential therapies to promote neuronal plasticity during HIV infection and recreational drug abuse are being developed.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Venkata Subba Rao Atluri
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
13
|
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B. HIV-1 Genetic Variation Resulting in the Development of New Quasispecies Continues to Be Encountered in the Peripheral Blood of Well-Suppressed Patients. PLoS One 2016; 11:e0155382. [PMID: 27195985 PMCID: PMC4873138 DOI: 10.1371/journal.pone.0155382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors. Phylogenetic methods based on the sequences of the LTR and tat exon 1 of the HIV-1 proviral DNA quasispecies were used to obtain an estimate of an average mutation rate of 5.3 nucleotides (nt)/kilobasepair (kb)/year (yr) prior to initiation of antiretroviral therapy (ART). Following ART the baseline mutation rate was reduced to an average of 1.02 nt/kb/yr. The post-ART baseline rate of genetic change, however, appears to be unique for each patient. These studies represent our initial steps in quantifying rates of genetic change among HIV-1 quasispecies using longitudinally sampled sequences from patients at different stages of disease both before and after initiation of combination ART. Notably, while long-term ART reduced the estimated mutation rates in the vast majority of patients studied, there was still measurable HIV-1 mutation even in patients with no detectable virus by standard quantitative assays. Determining the factors that affect HIV-1 mutation rates in the peripheral blood may lead to elucidation of the mechanisms associated with changes in HIV-1 disease severity.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
14
|
Kesby JP, Markou A, Semenova S. Effects of HIV/TAT protein expression and chronic selegiline treatment on spatial memory, reversal learning and neurotransmitter levels in mice. Behav Brain Res 2016; 311:131-140. [PMID: 27211061 DOI: 10.1016/j.bbr.2016.05.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
Neurotoxic viral protein TAT may contribute to deficits in dopaminergic and cognitive function in individuals infected with human immunodeficiency virus. Transgenic mice with brain-specific doxycycline-induced TAT expression (TAT+, TAT- control) show impaired cognition. However, previously reported TAT-induced deficits in reversal learning may be compromised by initial learning deficits. We investigated the effects of TAT expression on memory retention/recall and reversal learning, and neurotransmitter function. We also investigated if TAT-induced effects can be reversed by improving dopamine function with selegiline, a monoamine oxidase inhibitor. Mice were tested in the Barnes maze and TAT expression was induced after the task acquisition. Selegiline treatment continued throughout behavioral testing. Dopamine, serotonin and glutamate tissue levels in the prefrontal/orbitofrontal cortex, hippocampus and caudate putamen were measured using high performance liquid chromatography. Neither TAT expression nor selegiline altered memory retention. On day 2 of reversal learning testing, TAT+ mice made fewer errors and used more efficient search strategies than TAT- mice. TAT expression decreased dopamine turnover in the caudate putamen, increased serotonin turnover in the hippocampus and tended to increase the conversion of glutamate to glutamine in all regions. Selegiline decreased dopamine and serotonin metabolism in all regions and increased glutamate levels in the caudate putamen. In the absence of impaired learning, TAT expression does not impair spatial memory retention/recall, and actually facilitates reversal learning. Selegiline-induced increases in dopamine metabolism did not affect cognitive function. These findings suggest that TAT-induced alterations in glutamate signaling, but not alterations in monoamine metabolism, may underlie the facilitation of reversal learning.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
15
|
Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections. Neural Plast 2015; 2015:138979. [PMID: 26649202 PMCID: PMC4663354 DOI: 10.1155/2015/138979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders.
Collapse
|