1
|
Zhu R, Wu J, Chen R, Zhou M, Cao S, Wu Z, Wang L, Zhang L, Zhu S. HA198 mutations in H9N2 avian influenza: molecular dynamics insights into receptor binding. Front Vet Sci 2025; 11:1526600. [PMID: 39846021 PMCID: PMC11751220 DOI: 10.3389/fvets.2024.1526600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus. Methods Using the sequence of the A/Chicken/Jiangsu/WJ57/2012 strain, we constructed recombinant H9N2 viruses, including rWJ57, rWJ57/HA198A, and rWJ57/HA198T, using reverse genetics. These variants were analyzed through hemagglutination inhibition (HI) assays, receptor-destroying enzyme (RDE) assays, enzyme-linked immunosorbent assays (ELISA) and solid-phase receptor binding assays. Additionally, molecular dynamics (MD) simulations were performed to further dissect the atomic-level interactions between HA and sialic acids (SA). Results The results demonstrated that HA mutations significantly altered the receptor-binding properties of the virus. Specifically, rWJ57 (HA198V) exhibited 4-fold and 16-fold higher overall receptor-binding avidity compared to rWJ57/HA198A and rWJ57/HA198T, respectively. Furthermore, HA198V/T mutations significantly enhanced viral binding to human-type α2,6 SA receptors (p < 0.001), whereas the HA198A mutation exhibited a marked preference for avian-type α2,3 SA receptors (p < 0.001). Additionally, these mutations altered interactions with non-specific antibodies but not specific antibodies, with high-avidity receptor binding mutations exhibiting reduced non-specific antibody binding, suggesting a potential novel mechanism for immune evasion. MD simulations revealed HA198V/T formed stable complexes with the α2,6 SA, mediated by specific residues and water bridges, whereas HA198A formed stable complexes with the α2,3 SA. Interestingly, residue 198 interacted with the α2,6 SA via water bridges but had with showed minimal direct interaction with α2,3 SA. Discussion This study provides new insights into the molecular basis of receptor specificity, binding affinity, and antigenic drift in H9N2 viruses, highlighting the critical role of HA 198 mutations in regulating host adaptation. These findings are of great significance for H9N2 virus surveillance, vaccine development, and zoonotic transmission risk assessment.
Collapse
Affiliation(s)
- Rui Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Jie Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ruiying Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Mo Zhou
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Shinuo Cao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Zhi Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Ligang Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Janakiraman V, Sudhan M, Ahmad SF, Attia SM, Emran TB, Ahmed SSSJ. Molecular Docking, Quantum Mechanics and Molecular Dynamics Simulation of Anti-CAD Drugs Against High-Risk Xanthine Dehydrogenase Variants Associated with Oxidative Stress Pathways. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2024; 23:1109-1128. [DOI: 10.1142/s2737416524500315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Xanthine dehydrogenase (XDH) contributes significantly to generating reactive oxygen species in coronary artery disease (CAD). XDH has been proposed as a therapeutic target, but its genetic variants could affect protein structure and drug response. We aimed to assess protein structure modification occur due to genetic variants and to screen 215 CAD drugs for their utility in personalized CAD treatment against the XDH variants. A series of computational methods were implemented to identify pathogenic variants that cause XDH structure instability localized at the con served regions contributing to functional significance. Then, the XDH structures with the pathogenic variants were modeled using two different approaches to select the best models for docking with the CAD drugs. Finally, the stability of the docked complexes and their ability to transfer electrons were evaluated using molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculation. Among 751 variants examined; R149C and Q919R showed high pathogenicity, localized in conserved regions could alter protein structure and function. Further, docking of CAD drugs against XDH (native, R149C and Q919R) showed vericiguat with higher affinity, ranging from −7.95 kcal/mol to −10.41 kcal/mol, than the well-known XDH inhibitor (febuxostat, −5.73 kcal/mol to −8.35 kcal/mol). This indicates that vericiguat will be effective in CAD treatment, regardless of the XDH variants. Additionally, MD simulation and QM/MM confirmed vericiguat stability and electron transfer ability to form hydrogen bonds with the XDH protein. In conclusion, vericiguat will be beneficial for the personalized treatment of CAD by inhibiting XDH variants. Additional clinical studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- V. Janakiraman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - M. Sudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Cheng W, Zhang BF, Chen N, Liu Q, Ma X, Fu X, Xu M. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys 2024; 82:1433-1451. [PMID: 38753250 DOI: 10.1007/s12013-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/25/2024]
Abstract
Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Bo-Feng Zhang
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Na Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qun Liu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xin Ma
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xiao Fu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Min Xu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China.
| |
Collapse
|
4
|
He F, Shi H, Hu S, Liu R. Regulation mechanisms of ferric ions release from iron-loaded transferrin protein caused by nano-sized polystyrene plastics-induced conformational and structural changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133495. [PMID: 38232549 DOI: 10.1016/j.jhazmat.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Sharma A, Vora J, Patel D, Sinha S, Jha PC, Shrivastava N. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J Biomol Struct Dyn 2022; 40:3296-3311. [PMID: 33183178 PMCID: PMC7678369 DOI: 10.1080/07391102.2020.1846624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/01/2020] [Indexed: 12/01/2022]
Abstract
The recently emerged COVID-19 has been declared a pandemic by the World Health Organization as to date; no therapeutic drug/vaccine is available for the treatment. Due to the lack of time and the urgency to contain the pandemic, computational screening appears to be the best tool to find a therapeutic solution. Accumulated evidence suggests that many phyto-compounds possess anti-viral activity. Therefore, we identified possible phyto-compounds that could be developed and used for COVID-19 treatment. In particular, molecular docking was used to prioritize the possible active phyto-compounds against two key targets namely RNA dependent RNA polymerase (RdRp) and main protease (Mpro) of SARS-CoV-2. In this study, an antiviral drug- Remdesivir (RdRp inhibitor) and Darunavir (Mpro inhibitor) are used as reference drugs. This study revealed that phyto-molecules- Mulberroside-A/C/E/F, Emblicanin A, Nimbolide, and Punigluconin showed high binding affinity against RdRp while Andrographolides, Mulberrosides, Anolignans, Chebulic acid, Mimusopic acid, and Punigluconin showed better binding affinity against Mpro as compared with the reference drug. Furthermore, ADME profiles validated the drug-likeness properties of prioritized phyto-compounds. Besides, to assess the stability, MD simulations studies were performed along with reference inhibitors for Mpro (Darunavir) and RdRp (Remdesivir). Binding free energy calculations (MM-PBSA) revealed the estimated value (ΔG) of Mpro_Darunavir; Mpro_Mulberroside E; RdRp_Remdesivir and RdRp_Emblicanin A were -111.62 ± 6.788, -141.443 ± 9.313, 30.782 ± 5.85 and -89.424 ± 3.130 kJmol-1, respectively. Taken together, the study revealed the potential of these phyto-compounds as inhibitors of RdRp and Mpro inhibitor that could be further validated against SARS-CoV-2 for clinical benefits.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhilasha Sharma
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Registered Ph.D. student of Department of Life science, Gujarat University, Ahmedabad, Gujarat, India
| | - Jaykant Vora
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Registered Ph.D. student of Department of Life science, Gujarat University, Ahmedabad, Gujarat, India
| | - Dhaval Patel
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, India
| | - Sonam Sinha
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Registered Ph.D. student of Department of Life science, Gujarat University, Ahmedabad, Gujarat, India
| | - Prakash C. Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Computational investigation of adenosine 5′-(α,β-methylene)-diphosphate (AMPCP) derivatives as ecto-5′-nucleotidase (CD73) inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2022. [DOI: 10.1007/s11224-021-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Cao Y, Lei E, Li L, Ren J, He X, Yang J, Wang S. Antiviral activity of Mulberroside C against enterovirus A71 in vitro and in vivo. Eur J Pharmacol 2021; 906:174204. [PMID: 34051220 DOI: 10.1016/j.ejphar.2021.174204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease which seriously threatens young children's health and lives. However, there is no effective therapy currently available for treating these infections. Therefore, effective drugs to prevent and treat EV-A71 infections are urgently needed. Here, we identified Mulberroside C potently against the proliferation of EV-A71. The in-vitro anti-EV-A71 activity of Mulberroside C was assessed by cytopathic effect inhibition and viral plaque reduction assays, and the results showed that Mulberroside C significantly inhibited EV-A71 infection. The downstream assays affirmed that Mulberroside C inhibited viral protein and RNA synthesis. Furthermore, Mulberroside C effectively reduced clinical symptoms in EV-A71 infected mice and reduced mortality at higher concentrations. The mechanism study indicated that Mulberroside C bound to the hydrophobic pocket of viral capsid protein VP1, thereby preventing viral uncoating and genome release. Taken together, our study indicated that Mulberroside C could be a promising EV-A71 inhibitor and worth extensive preclinical investigation as a lead compound.
Collapse
Affiliation(s)
- Yiming Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - En Lei
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China; School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, PR China
| | - Lei Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jin Ren
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China; School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, PR China.
| | - Shengqi Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
8
|
Vora J, Velhal S, Sinha S, Patel V, Shrivastava N. Bioactive phytocompound mulberroside C and endophytes of Morus alba as potential inhibitors of HIV-1 replication: a mechanistic evaluation. HIV Med 2021; 22:690-704. [PMID: 33987901 DOI: 10.1111/hiv.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Despite considerable advancement in antiretroviral therapy, development of safe, effective, and multi-targeted drugs for HIV still remains a big challenge. Endophytes are untouched and, hence, an important and novel sources in drug discovery endeavours. The present study was conducted to identify the anti-HIV compounds from Morus alba and endophytes isolated from it. METHODS The extracts of isolated endophytes were screened using high-performance liquid chromatography (HPLC). Further, all samples were analysed for their cytotoxicity using a thiazolyl blue tetrazolium bromide assay. Subsequently, anti-HIV activity was performed using cell-based and cell-free assay. At the end, potential endophytes were identified using gene sequencing. RESULTS A total of 27 endophytes were isolated from the eight stem bark samples of M. alba. Of the 27 endophytes, extracts of total of four endophytes showed a profile similar to the M. alba plant when analysed by HPLC. Further experimentation with extracts of these four endophytes, along with an extract of M. alba stem bark and its bioactive molecule, mulberroside C, revealed that all these six samples have good inhibitory potential for HIV. Among them, mulberroside C and two endophytic fungal extracts showed very potent anti-HIV activity. Subsequently, mechanistic studies at the molecular level showed that out of six test samples, three acted as protease inhibitors. Further, all four potential endophytes were identified using gene sequencing. CONCLUSIONS The overall findings of these studies can help in the development of a novel anti-HIV candidate from mulberroside C, an extract of stem bark of M. alba and extracts of these endophytes. However, further validation and clinical studies are required to develop an anti-HIV drug.
Collapse
Affiliation(s)
- J Vora
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India.,Department of Life Science, Gujarat University, Ahmedabad, India
| | - S Velhal
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - S Sinha
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India.,Department of Life Science, Gujarat University, Ahmedabad, India
| | - V Patel
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - N Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India
| |
Collapse
|
9
|
vonRanke NL, Ribeiro MMJ, Miceli LA, de Souza NP, Abrahim-Vieira BA, Castro HC, Teixeira VL, Rodrigues CR, Souza AMT. Structure-activity relationship, molecular docking, and molecular dynamic studies of diterpenes from marine natural products with anti-HIV activity. J Biomol Struct Dyn 2020; 40:3185-3195. [PMID: 33183161 DOI: 10.1080/07391102.2020.1845977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 infection is a global epidemic whose treatment is limited majorly by viral resistance and adverse effects. Natural products from algae have been studied for many years, including antiviral, being an alternative to anti-HIV drug design. Since the isolation of natural products can be a hurdle, molecular modeling is an important tool to study these compounds. Herein, structure-activity relationship, molecular docking, and molecular dynamic studies were performed to direct the studies of ten marine natural products with anti-HIV activity. In the structure-activity relationship, descriptors were identified associating the anti-HIV activity of five diterpenes with possible action on the reverse transcriptase allosteric site. These diterpenes were evaluated by molecular docking, and it was identified that only dolabelladienetriol interacted in the allosteric site. Molecular dynamics suggested that the dolabelladienetriol might interfere with the viral RNA binding to HIV-1 RT by inducing a conformational change of the enzyme. Also, in silico ADMET simulations predicts that the dolabelladienetriol present a high potential to be successfully developed as a drug. Thus, applying in silico approaches was possible to suggest potential anti-HIV compounds derived from marine natural products.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N L vonRanke
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M M J Ribeiro
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Miceli
- Laboratory of Antibiotics, Biochemistry, Education and Molecular Modeling (LABiEMol), Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - N P de Souza
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B A Abrahim-Vieira
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H C Castro
- Laboratory of Antibiotics, Biochemistry, Education and Molecular Modeling (LABiEMol), Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - V L Teixeira
- Center for Biological Sciences and Health (CCBS), Rectory, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - C R Rodrigues
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A M T Souza
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Yang JS, Chiang JH, Tsai S, Hsu YM, Bau DT, Lee KH, Tsai FJ. In Silico De Novo Curcuminoid Derivatives From the Compound Library of Natural Products Research Laboratories Inhibit COVID-19 3CLpro Activity. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taiwan
| | - Shih‑Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kuo-Hsiung Lee
- UNC Eshelman School of Pharmacy, Natural Products Research Laboratories, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, Chandra R, Singh P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn 2020; 39:2659-2672. [PMID: 32362235 PMCID: PMC7212547 DOI: 10.1080/07391102.2020.1752310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current outbreak of a novel coronavirus, named as SARS-CoV-2 causing COVID-19
occurred in 2019, is in dire need of finding potential therapeutic agents. Recently,
ongoing viral epidemic due to coronavirus (SARS-CoV-2) primarily affected mainland China
that now threatened to spread to populations in most countries of the world. In spite of
this, there is currently no antiviral drug/ vaccine available against coronavirus
infection, COVID-19. In the present study, computer-aided drug design-based screening to
find out promising inhibitors against the coronavirus (SARS-CoV-2) leads to infection,
COVID-19. The lead therapeutic molecule was investigated through docking and molecular
dynamics simulations. In this, binding affinity of noscapines(23B)-protease of SARS-CoV-2
complex was evaluated through MD simulations at different temperatures. Our research group
has established that noscapine is a chemotherapeutic agent for the treatment of drug
resistant cancers; however, noscapine was also being used as anti-malarial, anti-stroke
and cough-suppressant. This study suggests for the first time that noscapine exerts its
antiviral effects by inhibiting viral protein synthesis.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India
| | | | - Sujata K Dass
- Department of Neurology, BLK Super Speciality Hospital, New Delhi, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|