1
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Sun M, Wang C, Wang P, Ye Q, Zhou Y, Li J, Liu T. Design, synthesis, and evaluation of pyrido.[3,4-b]pyrazin-2(1H)-one derivatives as potent FLT3 inhibitors. Bioorg Med Chem 2023; 79:117155. [PMID: 36638621 DOI: 10.1016/j.bmc.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is characterized by fast progression and low survival rates, in which Fms-like tyrosine kinase 3 (FLT3) receptor mutations have been identified as driver mutations in a subgroup of AML patients. Herein, we describe the design, synthesis, and biological evaluation of a novel series of potent pyrido.[3,4-b]pyrazin-2(1H)-one derivatives as FLT3 inhibitors. The compounds exhibited moderate to potent FLT3 kinase inhibitory potency and excellent antiproliferative activities against MV4-11 cells. Among them, compound 13 demonstrated the most potent kinase activity against FLT3-D835Y (IC50 = 29.54 ± 4.76 nM) and cellular potency against MV4-11 cells (IC50 = 15.77 ± 0.15 nM). Compound 13 also efficiently inhibited the growth of multiple mutant BaF3 cells expressing FLT3-D835V/F, FLT3-F691L, and FLT3-ITD/D835Y. Furthermore, compound 13 was metabolically stable in mouse liver microsomes. Moreover, the treatment with compound 13 led to robust inhibition of FLT3 autophosphorylation on Tyr589/591 in MV4-11 cells. In summary, our data demonstrated that 13 was worthy of further study for the treatment of AML.
Collapse
Affiliation(s)
- Mei Sun
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingqing Ye
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhou Y, Xiang S, Yang F, Lu X. Targeting Gatekeeper Mutations for Kinase Drug Discovery. J Med Chem 2022; 65:15540-15558. [PMID: 36395392 DOI: 10.1021/acs.jmedchem.2c01361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clinically acquired resistance is a major challenge in cancer therapies with small-molecule kinase inhibitors (SMKIs). Gatekeeper mutations in the ATP-binding pocket of kinases are the most common mutations leading to acquired resistance. To date, seven new-generation kinase inhibitors targeting gatekeeper mutations have been approved by the FDA; however, the clinical need is still unmet. Here, we systematically summarize the types of gatekeeper mutations across the kinase family, the structural basis for acquired resistance, and newly developed SMKIs targeting gatekeeper mutations as well as highlight the opportunities and challenges of kinase drug discovery for targeting gatekeeper mutations.
Collapse
Affiliation(s)
- Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Fang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
4
|
Tong L, Wang P, Li X, Dong X, Hu X, Wang C, Liu T, Li J, Zhou Y. Identification of 2-Aminopyrimidine Derivatives as FLT3 Kinase Inhibitors with High Selectivity over c-KIT. J Med Chem 2022; 65:3229-3248. [PMID: 35138851 DOI: 10.1021/acs.jmedchem.1c01792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report two promising compounds 30 and 36 possessing nanomolar FLT3 inhibitory activities (IC50 = 1.5-7.2 nM), high selectivity over c-KIT (>1000-fold), and excellent anti-AML activity (MV4-11 IC50 = 0.8-3.2 nM). Furthermore, these two compounds efficiently inhibited the growth of multiple mutant BaF3 cells expressing FLT3-ITD, FLT3-D835V/F, FLT3-F691L, FLT3-ITD-F691L, and FLT3-ITD-D835Y. Oral administration of 30 and 36 at 6 mg/kg/d could significantly suppress tumor growth in the MV4-11 cell-inoculated xenograft model, exhibiting tumor growth inhibitory rates of 83.5% and 95.1%, respectively. Importantly, 36 could prolong the mouse survival time in the FLT3-ITD-TKD dual mutation syngeneic mouse model (BaF3-FLT3-ITD-D835Y) at a dose of 6 mg/kg p.o. bid/4W. No clear myelosuppression was observed in the treated group of 36 in the MPO strain of zebrafish, even at 10 μM. In summary, our data demonstrated that 36 may represent a promising candidate for the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China.,Hangzhou Institute of Innovative Medicine Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| | - Chang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| |
Collapse
|
5
|
Xu X, Hu L, Fan M, Hu Z, Li Q, He H, Qi B. Identification of 1,3-thiazinan-4-one urea-based derivatives as potent FLT3/VEGFR2 dual inhibitors for the treatment of acute myeloid leukemia. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7‐Oxostaurosporine and Its Non‐Natural Septanose Analogue. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| |
Collapse
|
7
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7-Oxostaurosporine and Its Non-Natural Septanose Analogue. Angew Chem Int Ed Engl 2021; 61:e202112524. [PMID: 34786807 DOI: 10.1002/anie.202112524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/09/2022]
Abstract
We report sequential metal catalysis towards indolocarbazole glycosides. The signature event is highlighted by i) Pd0 -catalyzed addition of indolocarbazole to alkoxyallene combined with ring-closing-metathesis; ii) Ru-catalyzed chemoselective olefin migration; iii) PdII -catalyzed oxidative cyclization to build the bicyclic core structure of the target compounds. This approach gave access to both natural pyranose- and non-natural septanose glycosides. A short formal synthesis of 7-oxostaurosporine was achieved via this strategy.
Collapse
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| |
Collapse
|
8
|
Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells. Proc Natl Acad Sci U S A 2021; 118:2016833118. [PMID: 33836581 DOI: 10.1073/pnas.2016833118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human clinical trials suggest that inhibition of enzymes in the DNA base excision repair (BER) pathway, such as PARP1 and APE1, can be useful in anticancer strategies when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. There is also evidence suggesting that inhibition of the BER enzyme 8-oxoguanine DNA glycosylase-1 (OGG1), which initiates repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-dG), could be useful in treating certain cancers. Specifically, in acute myeloid leukemia (AML), both the RUNX1-RUNX1T1 fusion and the CBFB-MYH11 subtypes have lower levels of OGG1 expression, which correlate with increased therapeutic-induced cell cytotoxicity and good prognosis for improved, relapse-free survival compared with other AML patients. Here we present data demonstrating that AML cell lines deficient in OGG1 have enhanced sensitivity to cytarabine (cytosine arabinoside [Ara-C]) relative to OGG1-proficient cells. This enhanced cytotoxicity correlated with endogenous oxidatively-induced DNA damage and Ara-C-induced DNA strand breaks, with a large proportion of these breaks occurring at common fragile sites. This lethality was highly specific for Ara-C treatment of AML cells deficient in OGG1, with no other replication stress-inducing agents showing a correlation between cell killing and low OGG1 levels. The mechanism for this preferential toxicity was addressed using in vitro replication assays in which DNA polymerase δ was shown to insert Ara-C opposite 8-oxo-dG, resulting in termination of DNA synthesis. Overall, these data suggest that incorporation of Ara-C opposite unrepaired 8-oxo-dG may be the fundamental mechanism conferring selective toxicity and therapeutic effectiveness in OGG1-deficient AML cells.
Collapse
|
9
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|