1
|
Abu-Hashem AA, Gouda MA, Abdelgawad AA. Vilsmeier-Haack Cyclisation as a Facile Synthetic Route to Thieno [2,3- b]
Quinolines (Part I). LETT ORG CHEM 2023; 20:197-220. [DOI: 10.2174/1570178619666220922105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Quinoline ring system is extensively dispensed in natural products, especially in alkaloids.
Moreover, thieno[2,3-b]quinolines have vast biological activities, including urea transporter inhibition,
anti-microbial, antitumor, antioxidant, anti-inflammatory, and antiproliferative EGFR tyrosine
kinase inhibition. Vilsmeier-Haack is considered the most facile and promising set of synthetic routes,
leading to 2-chloro-3-formylquinolines through Vilsmeier-Haack cyclisation of N- arylacetamides,
which are subsequently used as key intermediates for the synthesis of thieno[2,3-b]quinolones
(Tqs). Many varieties of thieno[2,3-b]quinolines (Tqs) ring systems, specifically concerning medicinal
chemistry, have been developed over the past decade. In light of these facts, this review presents a
systematic and comprehensive survey of the method of preparation and the chemical reactivity of
thieno[2,3-b]quinolines through the Vilsmeier-Haack reaction. In this study, the methods of preparation
and the chemical reactivity of (Tqs) by using the Vilsmeier-Haack reaction are discussed. Since
the beginning of the 21st century, they have been advancing towards synthesizing substituted Tqs. It
can be concluded that substituted Tqs can be used as building blocks for the synthesis of polyfunctionalized
heterocyclic compounds with pharmacological interest.
Collapse
Affiliation(s)
- Ameen A. Abu-Hashem
- Department of Chemistry, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Moustafa A. Gouda
- Department of Chemistry,
Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science,
Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A.M. Abdelgawad
- Department of Chemistry, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia
| |
Collapse
|
2
|
Shui H, Zhong Y, Luo R, Zhang Z, Huang J, Yang P, Luo N. Cyclometalated iridium complexes-catalyzed acceptorless dehydrogenative coupling reaction: construction of quinoline derivatives and evaluation of their antimicrobial activities. Beilstein J Org Chem 2022; 18:1507-1517. [PMID: 36339464 PMCID: PMC9623133 DOI: 10.3762/bjoc.18.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
The acceptorless dehydrogenative coupling (ADC) reaction is an efficient method for synthesizing quinoline and its derivatives. In this paper, various substituted quinolines were synthesized from 2-aminobenzyl alcohols and aryl/heteroaryl/alkyl secondary alcohols in one pot via a cyclometalated iridium-catalyzed ADC reaction. This method has some advantages, such as easy availability of raw materials, mild reaction conditions, wide range of substrates, and environmental friendliness which conforms to the principles of green chemistry. Furthermore, a gram-scale experiment with low catalyst loading offers the potential to access the aryl/heteroaryl quinolones in suitable amounts. In addition, the antibacterial and antifungal activities of the synthesized quinolines were evaluated in vitro, and the experimental results showed that the antibacterial activities of compounds 3ab, 3ad, and 3ah against Gram-positive bacteria and compound 3ck against C. albicans were better than the reference drug norfloxacin.
Collapse
Affiliation(s)
- Hongling Shui
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Yuhong Zhong
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Renshi Luo
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Zhanyi Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Ping Yang
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China
| |
Collapse
|
3
|
Salem MA, Abu‐Hashem AA, Abdelgawad AAM, Gouda MA. Synthesis and reactivity of thieno[2,3‐ b]quinoline derivatives (Part II). J Heterocycl Chem 2021; 58:1705-1740. [DOI: 10.1002/jhet.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/31/2021] [Indexed: 11/12/2022]
Abstract
AbstractAs a continuation of our previous review entitled “Vilsmeier‐Haack cyclisation as a facile synthetic route to thieno[2,3‐b]quinolines (Part I).” This review describes the methods of preparation and the chemical reactivity of thieno[2,3‐b]quinolines, which might show interesting biological activities.
Collapse
Affiliation(s)
- Mohammed A. Salem
- Department of Chemistry, Faculty of Science and Arts King Khalid University Mohail Assir Saudi Arabia
- Department of Chemistry, Faculty of Science Al‐Azhar University Cairo Egypt
| | - Ameen A. Abu‐Hashem
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
- Chemistry Departments, Faculty of Science Jazan University Jazan Saudi Arabia
| | - Ahmed A. M. Abdelgawad
- Chemistry Departments, Faculty of Science Jazan University Jazan Saudi Arabia
- Medicinal and Aromatic Plants Department Desert Research Center Cairo Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts Taibah University, Ulla Medina Saudi Arabia
- Department of Chemistry Faculty of Science, Mansoura University, Mansoura Egypt
| |
Collapse
|
4
|
Khidre RE, Radini IM, Ameen TA, Abdelgawad AA. Triazoloquinolines I: Synthetic Methods and Pharmacological Properties of [1,2,3]triazoloquinoline Derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210202122645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with the synthetic methods and pharmacological properties of
[1,2,3]triazoloquinoline derivatives. There are ten isomers of fused [1,2,3]triazoloquinoline
according to the junction between triazole and quinoline. The synthetic methods are subdivided
into groups according to the type of isomers. The pharmacological activity of
[1,2,3]triazoloquinoline was also reported.
Collapse
Affiliation(s)
- Rizk E. Khidre
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Ibrahim M.A. Radini
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Tahah A. Ameen
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
5
|
Yang R, Li Z, Xie J, Liu J, Qin T, Liu J, Du H, Ye H. 4-Aminoquinolines Bearing a 1,3-Benzodioxole Moiety: Synthesis and Biological Evaluation as Potential Antifungal Agents. Chem Biodivers 2021; 18:e2100106. [PMID: 33759356 DOI: 10.1002/cbdv.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
In search of new environmentally friendly and effective antifungal agents, a series of 4-aminoquinolines bearing a 1,3-benzodioxole moiety were prepared and their structures were fully elucidated by spectroscopic analyses. The antifungal activities of all the target compounds against five phytopathogenic fungi were evaluated in vitro. The results revealed that most of the newly synthesized compounds exhibited obvious inhibitory activities at the concentration of 50 μg/mL. Among them, 6-(furan-2-yl)-N-(4-methylphenyl)-2H-[1,3]dioxolo[4,5-g]quinolin-8-amine hydrochloride (7m) displayed more promising antifungal potency with EC50 values of 10.3 and 14.0 μg/mL against C. lunata and A. alternate, respectively. Particularly, the EC50 value of 7m against C. lunata was 7.3-fold as potent as the standard azoxystrobin. There were some significant morphological alterations in the mycelia of C. lunata when treated with 7m at 50 μg/mL. Additionally, the preliminary structure-activity relationships (SARs) were also discussed. Thus, this study suggests that 4-aminoquinolines bearing a 1,3-benzodioxole moiety are interesting scaffolds for the development of novel antifungal agents.
Collapse
Affiliation(s)
- Rui Yang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Zhuolin Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Jialing Xie
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Jianchuan Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Tianhong Qin
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Junda Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Haiying Du
- College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Haoyun Ye
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|