1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025:d5na00040h. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
3
|
Siddique R, Yadav RK, Singh S, Shahin R, Dubey AK, Singh AK, Singh AK, Gupta NK, Baeg JO, Kim TW. Photocatalytic oxygenation of sulfide using solar light and ingenious GQDs@AQ catalyst: Mechanistic and synthetic investigations. Photochem Photobiol 2024; 100:541-548. [PMID: 37740555 DOI: 10.1111/php.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
The combination of excellent electronic properties and thermal stability positions orange-derived graphene quantum dots (GQDs) as promising materials for solar light-based applications. Researchers are actively exploring their potential in fields such as photovoltaics, photocatalysis, optoelectronics, and energy storage. Their abundance, cost-effectiveness, and eco-friendly nature further contribute to their growing relevance in cutting-edge scientific research. Furthermore, only GQDs are not much more effective in the UV-visible region, therefore, required band gap engineering in GQDs material. In this context, we designed GQDs-based light harvesting materials, which is active in UV-visible region. Herein we synthesized GQDs coupled with 2,6-diaminoanthrquninone (AQ), that is, GQDs@AQ light harvesting photocatalyst the first time for the oxidation of sulfide to sulfoxide under visible light. For the integrating reactions of sulfide in aerobic conditions under visible light by GQDs@AQ photocatalyst exhibit utmost higher photocatalytic activity than simple GQDs due to low molar extinction coefficient and slow recombination charges. The use of GQDs@AQ light harvesting photocatalyst, showed the excellent organic transformation efficiency of sulfide to sulfoxide with excellent yield (94%). The high efficiency and excellent yield of 94% indicate the effectiveness of GQDs@AQ as a photocatalyst for these specific organic transformations.
Collapse
Affiliation(s)
- Rahnuma Siddique
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Arun K Dubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Atresh K Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Jin-Ook Baeg
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Yeongson-ro, Cheonggye-myeon, Muan-gun, South Korea
| |
Collapse
|
4
|
Gao X, Chen F, Jin MY, Xu C. Triethyl amine as an effective reducing agent for sulfoxide deoxygenation. Org Biomol Chem 2024; 22:3215-3219. [PMID: 38567548 DOI: 10.1039/d4ob00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Enabled by triethyl amine (Et3N) and thionyl chloride (SOCl2), an efficient and practical protocol for deoxygenation of sulfoxide to sulfide was developed. This new method features a wide range of substrate scope, including diaryl, dialkyl and aryl alkyl substituted sulfoxides. Detailed mechanistic investigations reveal the crucial role played by Et3N as an electron-donating reductant rather than a hydrogen-atom donor.
Collapse
Affiliation(s)
- Xiaojing Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fumin Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
De S, Jain A, Barman P. Recent Advances in the Catalytic Applications of Chiral Schiff‐Base Ligands and Metal Complexes in Asymmetric Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Soumik De
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Abhinav Jain
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| |
Collapse
|
6
|
Kargar H, Nateghi-Jahromi M, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ali S, Ashfaq M, Tahir MN. Synthesis, spectral characterization, crystal structure and catalytic activity of a novel dioxomolybdenum Schiff base complex containing 4-aminobenzhydrazone ligand: A combined experimental and theoretical study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Omeprazole inhibits α-glucosidase activity and the formation of nonenzymatic glycation products: Activity and mechanism. J Biosci Bioeng 2021; 133:110-118. [PMID: 34802943 DOI: 10.1016/j.jbiosc.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
In this study, the inhibitory effect and mechanism of omeprazole on α-glucosidase and nonenzymatic glycation were investigated in vitro by using multi-spectroscopic methods and molecular docking. Enzyme kinetic results showed that omeprazole inhibited α-glucosidase in a reversible and noncompetitive manner (IC50= 0.595 ± 0.003 mM). The results from fluorescence quenching and thermomechanical analyses signified that omeprazole reduced the fluorescence intensity of α-glucosidase by forming an omeprazole-α-glucosidase complex primarily driven by hydrogen bonds. Molecular docking further confirmed that hydrogen bonds and hydrophobic forces were the major driving forces for omeprazole binding to α-glucosidase. The nonenzymatic glycation assays revealed that omeprazole had a moderate inhibition against the formation of fructosamine, dicarbonyl compounds, and advanced glycation end products (AGEs). This study provides a new inhibitor of both α-glucosidase and nonenzymatic glycation and provides a practicable candidate for treating diabetes and its complications.
Collapse
|
8
|
Experimental and theoretical studies of new dioxomolybdenum complex: Synthesis, characterization and application as an efficient homogeneous catalyst for the selective sulfoxidation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Manafi Khajeh Pasha A, Raoufi S, Ghobadi M, Kazemi M. Biologically active tetrazole scaffolds: Catalysis in magnetic nanocomposites. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1811872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Ghobadi
- Central Laboratory, Llam Petro Chemical Coomplex (ILPC), Chavar, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
10
|
Ghobadi M, Pourmoghaddam Qhazvini P, Eslami M, Kazemi M. Magnetic nanoparticles supported bromine sources: Catalysis in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1829646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, Ilam Petro Chemical Coomplex (ILPC), Chavar, Ilam, Iran
| | | | - Mohammad Eslami
- Department of Electrical and Computer Engineering, Chabahar Branch, Islamic Azad University, Chabahar, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
11
|
Ghobadi M, Kargar Razi M, Javahershenas R, Kazemi M. Nanomagnetic reusable catalysts in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1819328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Organic Chemistry Department, Chemistry Faculty, Urmia University, Urmia, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
12
|
Das SP, Boruah JJ. Selective and solventless oxidation of organic sulfides and alcohols using new supported molybdenum (VI) complex in microwave and conventional methods. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siva Prasad Das
- Department of ChemistrySchool of Science, RK University Bhavnagar Highway Kasturbadham, Rajkot Gujarat 360020 India
| | - Jeena Jyoti Boruah
- Department of ChemistrySchool of Science, RK University Bhavnagar Highway Kasturbadham, Rajkot Gujarat 360020 India
- Department of ChemistryMoridhal College Moridhal, Dhemaji Assam 787057 India
| |
Collapse
|
13
|
Kargar Razi M, Javahershenas R, Adelzadeh M, Ghobadi M, Kazemi M. Synthetic routes to rhodanine scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1812658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Chemistry Faculty, Urmia University, Urmia, Iran
| | | | - Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
14
|
Ashraf MA, Liu Z, Zhang D, Alimoradi A. L‐lysine‐Pd Complex Supported on Fe
3
O
4
MNPs: a novel recoverable magnetic nanocatalyst for Suzuki C‐C Cross‐Coupling reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry Henan Agricultural University Zhengzhou 450002 China
- Department of Geology Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Zhenling Liu
- School of Management Henan University of Technology Zhengzhou 450001 China
| | - Dangquan Zhang
- School of Forestry Henan Agricultural University Zhengzhou 450002 China
| | - Ashkan Alimoradi
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
15
|
Abstract
The β-hydroxy sulfides are an important class of organosulfur compounds that have a key role in the synthesis of bioactive compounds containing biological and natural products. The thiolysis of epoxides is the most common and best route for the synthesis of β-hydroxy sulfides. During the last decade, the applications of a diverse range of catalysts and promoter agents in green and organic mediums as well as under solvent-free conditions for the regioselective ring-opening reactions of epoxides with thiols in order to synthesize β-hydroxy sulfides have been studied by various research groups. This review is focused on the important achievements reported in the literature for the thiolysis of epoxides.
Collapse
Affiliation(s)
- Zhihua Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | | | - Mosstafa Kazemi
- Department of Chemistry, Faculty of Science, Ilam University, PO Box, 69315516 Ilam, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, PO Box, 69315516 Ilam, Iran
| |
Collapse
|
16
|
Abstract
Sulfoxides are key scaffolds in the synthesis of pharmaceutically active molecules. A large
number of sulfoxides are indispensable ingredients in the structure of most antibiotics, biological and
natural products such as Modafinil, Adrafinil, CRL-40,941 or fladrafinil, Fipronil, Oxydemetonmethyl,
Omeprazole, Pantoprazole, Lansoprazole and Rabeprazole. The oxidation of sulfides is the
most common and efficient strategy for the preparation of sulfoxides. Recently, many protocols
based on using transition metals have been reported for the oxidation of sulfides to the sulfoxides. In
this paper, we summarized a nice category of the reported protocols in the literature for the oxidation
of sulfides to sulfoxides.
Collapse
Affiliation(s)
- Qiang Pu
- School of Information Science and Engineering, Chengdu University, Chengdu 610106, China
| | - Mosstafa Kazemi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| |
Collapse
|
17
|
Nikoorazm M, Mohammadi M, Khanmoradi M. Zirconium@guanine@MCM‐41 nanoparticles: An efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component tandem Knoevenagel condensation–Michael addition–cyclization Reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Maryam Khanmoradi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
18
|
A Novel Magnetic Immobilized Para-Aminobenzoic Acid-Cu(II) Complex: A Green, Efficient and Reusable Catalyst for Aldol Condensation Reactions in Green Media. Catal Letters 2020. [DOI: 10.1007/s10562-020-03216-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Tamoradi T, Masoumeh Mousavi S, Mohammadi M. C−C and C−S Coupling Catalyzed by Supported Cu(II) on Nano CoFe
2
O
4. ChemistrySelect 2020. [DOI: 10.1002/slct.202000084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Masoud Mohammadi
- Department of ChemistryFaculty of Science, Ilam University Ilam Iran
| |
Collapse
|
20
|
Yan L, Li Y, Yang B, Gao W. InBr3-Catalyzed Synthesis of Highly Functionalized Piperidines and Benzo[a]Pyrano[2,3-c] Phenazines. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1744026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Yan
- School of Engineering, Honghe University, Mengzi, China
| | - Yingfang Li
- School of Engineering, Honghe University, Mengzi, China
| | - Bo Yang
- School of Engineering, Honghe University, Mengzi, China
| | - Wei Gao
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| |
Collapse
|
21
|
Li Y, Yang B, Yan L, Gao W, Omer KM, Foong LK. Recent advances in O-formylation of alcohols and phenols using efficient catalysts in eco-friendly media. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1744015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingfang Li
- School of Engineering, Honghe University, Mengzi, China
| | - Bo Yang
- School of Engineering, Honghe University, Mengzi, China
| | - Li Yan
- School of Engineering, Honghe University, Mengzi, China
| | - Wei Gao
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| | - Khalid M. Omer
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, Kurdistan, Iraq
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Civil Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
22
|
Nikoorazm M, Khanmoradi M. Synthesis and characterization of VO–vanillin complex immobilized on MCM‐41 and its facile catalytic application in the sulfoxidation reaction, and synthesis of 2,3‐dihydroquinazolin‐4(1
H
)‐ones and disulfides in green media. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohsen Nikoorazm
- Department of Chemistry, Faculty of ScienceIlam University Ilam Iran
| | - Maryam Khanmoradi
- Department of Chemistry, Faculty of ScienceIlam University Ilam Iran
| |
Collapse
|
23
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
24
|
Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1720740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University, Ilam, Iran
| |
Collapse
|
25
|
Nikoorazm M, Khanmoradi M, Mohammadi M. Guanine‐La complex supported onto SBA‐15: A novel efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component Tandem Knoevenagel condensation–Michael addition–cyclization Reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohsen Nikoorazm
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | - Maryam Khanmoradi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
26
|
Tamoradi T, Mousavi SM, Mohammadi M. Synthesis of a new Ni complex supported on CoFe 2O 4 and its application as an efficient and green catalyst for the synthesis of bis(pyrazolyl)methane and polyhydroquinoline derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj00223b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel and magnetic nanocatalyst was synthesized for the synthesis of multicomponent compounds.
Collapse
Affiliation(s)
| | | | - Masoud Mohammadi
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| |
Collapse
|
27
|
Xie H, Liu H, Wang M, Pan H, Gao C. L‐Tyrosine‐Pd complex supported on Fe 3O 4magnetic nanoparticles: A new catalyst for C–C coupling and Synthesis of sulfides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongxue Xie
- College of Chemistry and Chemical EngineeringXinjiang Normal University Urumqi 830054 China
- Wuhan Quintarabio Inc Wuhan 430074 China
| | - Huihui Liu
- College of Chemistry and Chemical EngineeringXinjiang Normal University Urumqi 830054 China
| | | | - Hui Pan
- College of Chemistry and Chemical EngineeringXinjiang Normal University Urumqi 830054 China
| | - Caixia Gao
- College of Geology and Surveying EngineeringChongqing Vocationan Institiute of Engineering Chongqing 402260 China
| |
Collapse
|
28
|
Tamoradi T, Mousavi SM, Mohammadi M. Praseodymium( iii) anchored on CoFe 2O 4 MNPs: an efficient heterogeneous magnetic nanocatalyst for one-pot, multi-component domino synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1 H)-one derivatives. NEW J CHEM 2020. [DOI: 10.1039/c9nj05468e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CoFe2O4@Pr as highly efficient and reusable heterogeneous catalyst prepared by a simple procedure for the synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives.
Collapse
Affiliation(s)
| | | | - Masoud Mohammadi
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| |
Collapse
|
29
|
Lei L. Pd–Schiff base complex supported on Fe
3
O
4
magnetic nanoparticles: A new and highly efficient reusable catalyst for C–C bond formation in water. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lei Lei
- School of Civil EngineeringXuzhou University of Technology Xuzhou 221000 China
| |
Collapse
|