1
|
Sowa I, Paduch R, Mołdoch J, Szczepanek D, Szkutnik J, Sowa P, Tyszczuk-Rotko K, Blicharski T, Wójciak M. Antioxidant and Cytotoxic Potential of Carlina vulgaris Extract and Bioactivity-Guided Isolation of Cytotoxic Components. Antioxidants (Basel) 2023; 12:1704. [PMID: 37760007 PMCID: PMC10525758 DOI: 10.3390/antiox12091704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Carlina vulgaris is a poorly understood plant in the context of biological activity, despite its widespread application in ethnomedicine in numerous European countries. The aim of this study was to assess the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and to isolate the plant components linked to this effect. Ultra-high performance liquid chromatography with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC-HR/QTOF/MS-PDA) was used for the phytochemical characterization of the extract. Liquid-liquid extraction and preparative chromatography were employed for fractionation purposes. Our investigation demonstrated that the ethyl acetate fraction from C. vulgaris showed significant cytotoxicity, and a bioactivity-guided approach led to the isolation of oxylipins, including traumatic acid, pinellic acid, and 9,10-dihydroxy-8-oxsooctadec-12-enic acid. The structures of the compounds were confirmed by nuclear magnetic resonance spectroscopy. Among these compounds, the last one exhibited significant cytotoxicity, though without selectivity, and traumatic acid was characterized by mild cytotoxicity. The cytotoxicity was linked to intracellular reactive oxygen species generation.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland;
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Szkutnik
- Independent Unit of Functional Masticatory Disorders, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Sowa I, Mołdoch J, Dresler S, Kubrak T, Soluch A, Szczepanek D, Strzemski M, Paduch R, Wójciak M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H 2O 2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules 2023; 28:5422. [PMID: 37513294 PMCID: PMC10385139 DOI: 10.3390/molecules28145422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Institute of Medical Studies, Medical College, Rzeszów University, 35-310 Rzeszów, Poland
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Hasan HS, Shakya AK, Al-Jaber HI, Abu-Sal HE, Barhoumi LM. Exploring Echinops polyceras Boiss. from Jordan: Essential Oil Composition, COX, Protein Denaturation Inhibitory Power and Antimicrobial Activity of the Alcoholic Extract. Molecules 2023; 28:4238. [PMID: 37241978 PMCID: PMC10223352 DOI: 10.3390/molecules28104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In this article, we present the first detailed analysis of the hydro-distilled essential oil (HDEO) of the inflorescence heads of Echinops polyceras Boiss. (Asteraceae) from the flora of Jordan, offering observations at different growth (pre-flowering, full-flowering and post-flowering) stages. Additionally, we investigated the methanolic extract obtained from the aerial parts of the plant material at the full flowering stage in order to determine its inhibitory activity in terms of COX and protein denaturation and evaluate its antimicrobial effects against S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria. Performing GC/MS analysis of HDEO, obtained from the fresh inflorescence heads at the different growth stages, resulted in the identification of 192 constituents. The main class of compounds detected in these three stages comprised aliphatic hydrocarbons and their derivatives, which amounted to 50.04% (pre-flower), 40.28% (full-flower) and 41.34% (post-flower) of the total composition. The oils also contained appreciable amounts of oxygenated terpenoids, primarily sesquiterpenoids and diterpenoids. The pre-flowering stage was dominated by (2E)-hexenal (8.03%) in addition to the oxygenated diterpene (6E,10E)-pseudo phytol (7.54%). The full-flowering stage primarily contained (6E,10E)-pseudo phytol (7.84%), β-bisabolene (7.53%, SH) and the diterpene hydrocarbon dolabradiene (5.50%). The major constituents detected in the HDEO obtained at the post-flowering stage included the oxygenated sesquiterpenoid intermedeol (5.53%), the sesquiterpene hydrocarbon (E)-caryophyllene (5.01%) and (6E,10E)-pseudo phytol (4.47%). The methanolic extract obtained from air-dried aerial parts of E. polyceras displayed more COX-2 inhibition than COX-1 inhibition at a concentration level of 200 µg/mL. The extract exhibited a capacity to inhibit protein denaturation that was comparable with respect to the activity of diclofenac sodium and displayed moderate levels of antimicrobial activity against both bacterial species. The current results demonstrate the need to perform further detailed phytochemical investigations to isolate and characterize active constituents.
Collapse
Affiliation(s)
- Hazem S. Hasan
- Department of Plant Production and Protection, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hala I. Al-Jaber
- Chemistry Department, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan (L.M.B.)
| | - Hana E. Abu-Sal
- Chemistry Department, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan (L.M.B.)
| | - Lina M. Barhoumi
- Chemistry Department, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan (L.M.B.)
| |
Collapse
|
4
|
Spinozzi E, Ferrati M, Baldassarri C, Maggi F, Pavela R, Benelli G, Aguzzi C, Zeppa L, Cappellacci L, Palmieri A, Petrelli R. Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity. JOURNAL OF NATURAL PRODUCTS 2023; 86:1307-1316. [PMID: 37172063 DOI: 10.1021/acs.jnatprod.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Compounds isolated from botanical sources represent innovative and promising alternatives to conventional insecticides. Carlina oxide is a compound isolated from Carlina acaulis L. (Asteraceae) essential oil (EO) with great potential as bioinsecticide, being effective on various arthropod vectors and agricultural pests, with moderate toxicity on non-target species. Since the production from the wild source is limited, there is the need of exploring new synthetic routes for obtaining this compound and analogues with improved bioactivity and lower toxicity. Herein, the chemical synthesis of carlina oxide analogues was developed. Their insecticidal activity was assessed on the vectors Musca domestica L. and Culex quinquefasciatus Say, and their cytotoxicity was evaluated on a human keratinocyte cell line (HaCaT). The compounds' activity was compared with that of the natural counterparts EO and carlina oxide. In housefly tests, the analogues were comparably effective to purified carlina oxide. In Cx. quinquefasciatus assays, the meta-chloro analogue provided a significantly higher efficacy (LC50 of 0.71 μg mL-1) than the EO and carlina oxide (LC50 1.21 and 1.31 μg mL-1, respectively) and a better safety profile than carlina oxide on keratinocytes. Overall, this study can open the way to an agrochemical production of carlina oxide analogues employable as nature-inspired insecticides.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague 6, Czech Republic
- Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Praha 6, Suchdol, Czech Republic
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/C, 62032 Camerino, Italy
| | - Laura Zeppa
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/C, 62032 Camerino, Italy
| | - Loredana Cappellacci
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
5
|
Comprehensive Evaluation of the Antibacterial and Antifungal Activities of Carlina acaulis L. Essential Oil and Its Nanoemulsion. Antibiotics (Basel) 2021; 10:antibiotics10121451. [PMID: 34943662 PMCID: PMC8698297 DOI: 10.3390/antibiotics10121451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Plants are considered to be an excellent source of new compounds with antibiotic activity. Carlina acaulis L. is a medicinal plant whose essential oil (EO) is mainly characterized by the polyacetylene carlina oxide, which has antimicrobial properties. The aim of this study was to evaluate the antimicrobial and antifungal activities of C. acaulis EO, carlina oxide, and nanoemulsion (NE) containing the EO. The EO was obtained through plant roots hydrodistillation, and carlina oxide was purified from it through silica gel column chromatography. The NE containing C. acaulis EO was prepared with the high-pressure homogenization method, and the minimum inhibitory concentration (MIC) was determined against several bacterial and fungal strains for all the C. acaulis-derived products. The latter resulted active versus all the screened Gram-positive bacterial strains and also on all the fungal strains with low MIC values. For yeast, the EO and carlina oxide showed good MIC values. The EO-NE demonstrated a better activity than the pure EO on all the tested bacterial and fungal strains. The results suggest that C. acaulis-derived products could be potential candidates for the development of natural antibacterial and antifungal agents.
Collapse
|
6
|
Mami IR, Merad-Boussalah N, El Amine Dib M, Tabti B, Costa J, Muselli A. Chemical Variability and Antioxidant Activities of the Essential Oils of the Aerial Parts of Ammoides verticillata and the Roots of Carthamus caeruleus and their Synergistic Effect in Combination. Comb Chem High Throughput Screen 2020; 24:71-78. [PMID: 32504498 DOI: 10.2174/1386207323666200606213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Oxidative stress is implicated in the development and progression of many diseases. Some of the appropriate actions that could taken to resolve the problem of these diseases are search for new antioxidant substances isolated from plants. The aims of this study were to research the intraspecies variations of A. verticillata and C. caeruleus essential oils from 8 locations using statistical analysis, the in vitro antioxidant properties of collective essential oils and in combinations. MATERIALS AND METHODS The essential oils were analyzed by GC and GC-MS. The intraspecies variations of the essential oil compositions were discussed using principal component analysis (PCA) and cluster analysis (CA). The antioxidant properties were evaluated DPPH-radical scavenging activity and β-carotene bleaching test. RESULTS The main components of Ammoides verticillata collective essential oil (Coll EO) were thymol (30.5%), carvacrol (23.2%), p-cymene (13.1%), limonene (12.5%) and terpinene-4-ol (12.3%). While roots of Carthamus caeruleus essential oil were dominated by carline oxide (86.2%). The chemical variability allowed the discrimination of two main Groups for both Coll EOs. A direct correlation between the altitudes, climate and the chemical compositions was evidenced. Ammoides verticulata and Carthamus caeruleus Coll Eos showed good antioxidant activity. In binary mixture, the interaction between both Coll Eos and between oils rich of thymol and/or carvacrol with carlina oxide produced the best synergistic effects compared to individual essential oils and the synthetic antioxidant (BHT). CONCLUSION Ammoides verticillata and Carthamus caeruleus essential oil blends can be used as a natural food preservative and alternative to chemical antioxidants.
Collapse
Affiliation(s)
- Imane Rihab Mami
- Departement de Chimie, Faculte des Sciences, Universite de Tlemcen, Laboratoire (COSNA), BP 119, 13000 Tlemcen, Algeria
| | - Noria Merad-Boussalah
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Universite de Tlemcen, BP 119, 13000, Algeria
| | - Mohammed El Amine Dib
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Universite de Tlemcen, BP 119, 13000, Algeria
| | - Boufeldja Tabti
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Universite de Tlemcen, BP 119, 13000, Algeria
| | - Jean Costa
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| | - Alain Muselli
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| |
Collapse
|