1
|
Ray A, Yang C, Stelloh C, Tutaj M, Liu P, Liu Y, Qiu Q, Auer PL, Lin CW, Widlansky ME, Geurts AM, Cowley AW, Liang M, Kwitek AE, Greene AS, Rao S. Chromatin State Maps of Blood Pressure-Relevant Renal Segments Reveal Potential Regulatory Role for SNPs. Hypertension 2025; 82:476-488. [PMID: 39723540 DOI: 10.1161/hypertensionaha.124.23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors. The SNPs identified in genome-wide association studies predominantly (>95%) reside within noncoding genomic regions, making it difficult to understand how they regulate BP. Given the central role of the kidney in regulating BP, we hypothesized that chromatin-accessible regions in renal tissue would be enriched for BP-associated single nucleotide polymorphisms. METHODS We manually dissected 2 important kidney segments that maintain the sodium-water balance: proximal tubules and medullary thick ascending limbs from the human and rat kidneys. To delineate their chromatin and transcriptomic profiles, we performed the assay for transposase-accessible chromatin and RNA sequencing, respectively. RESULTS The chromatin accessibility maps revealed the shared and unique cis-regulatory elements that modulate the chromatin accessibility in proximal tubule and medullary thick ascending limbs of humans and rats. We developed a visualization tool to compare the cross-species epigenomic maps to identify potential regulatory targets for hypertension pathogenesis. We also identified a significant enrichment of BP-associated single nucleotide polymorphisms (1064 for human proximal tubule and 1172 for human medullary thick ascending limbs) within accessible chromatin regions of both segments, including rs1173771 and rs1421811 at the NPR3 locus and rs1800470 at the TGFb1 locus. CONCLUSIONS Collectively, this study lays a foundation for interrogating how intergenic single nucleotide polymorphisms may regulate polygenic traits such as BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Chun Yang
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Monika Tutaj
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Pengyuan Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Qiongzi Qiu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Paul L Auer
- The Institute for Health and Equity (P.L.A.), Medical College of Wisconsin, Milwaukee
| | - Chien-Wei Lin
- Division of Biostatistics, Data Science Institute (C.-W.L.), Medical College of Wisconsin, Milwaukee
| | | | - Aron M Geurts
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Anne E Kwitek
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | | | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation (S.R.), Medical College of Wisconsin, Milwaukee
- Department of Cell Biology, Neurobiology, and Anatomy (S.R.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
2
|
Bakillah A, Al Subaiee M, Soliman AF, Obeid KK, Bashir SF, Al Hussaini A, Al Arab M, Al Otaibi A, Mubarak SAS, Al Qarni AA. Plasma Atrial Natriuretic Peptide Predicts Oxidized Low-Density Lipoprotein Levels in Type 2 Diabetes Mellitus Patients Independent of Circulating Adipokine and Cytokine. Int J Mol Sci 2025; 26:1859. [PMID: 40076485 PMCID: PMC11899485 DOI: 10.3390/ijms26051859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Atrial natriuretic peptide (ANP) and oxidized low-density lipoprotein (ox-LDL) play essential roles in the development and progression of vascular complications associated with type 2 diabetes mellitus (T2DM), and both are independently linked to cardiovascular diseases (CVD). However, the relationship between ANP and ox-LDL in patients with T2DM remains unclear as previous studies have primarily focused on circulating levels in various diseases. This study investigated the relationship between ANP and ox-LDL levels in obese individuals with T2DM. The cohort included 57 patients with T2DM (mean age 61.14 ± 9.99 years; HbA1c 8.66 ± 1.60%; BMI 35.15 ± 6.65 kg/m2). Notably, 95% of the patients had hypertension, 82% had dyslipidemia, 59% had an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, 14% had coronary artery disease (CAD), and 5% had a history of stroke. Plasma concentrations of ANP and ox-LDL were measured using ELISA. Adipokines and cytokines levels were measured using the multiplex® MAP Human Adipokine Magnetic Beads Spearman's correlation analysis which revealed a negative correlation between ANP and ox-LDL (r = -0.446, p = 0.001) as well as with the ox-LDL/apoB ratio (r = -0.423, p = 0.001) and ox-LDL/LDLc ratio (r = -0.307, p = 0.038). Multivariable regression analysis indicated that ANP was independently associated with ox-LDL (β = -115.736, p = 0.005). Stepwise linear regression further identified TNFα, leptin, and adiponectin as the strongest predictors influencing the relationship between ANP and ox-LDL levels (β = -64.664, p = 0.0311, and r2 = 0.546 for the model). However, these factors did not significantly mediate this association. This study emphasizes the need for further exploration of the complex interaction between ANP and ox-LDL in larger patient populations. This could provide valuable insights into potential therapeutic approaches for managing vascular complications in obese individuals with T2DM.
Collapse
Affiliation(s)
- Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Maram Al Subaiee
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Ayman Farouk Soliman
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Khamis Khamees Obeid
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Shahinaz Faisal Bashir
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Arwa Al Hussaini
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Mohammad Al Arab
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Abeer Al Otaibi
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Sindiyan Al Shaikh Mubarak
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Ali Ahmed Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| |
Collapse
|
3
|
Lagunas-Rangel FA. Aging insights from heterochronic parabiosis models. NPJ AGING 2024; 10:38. [PMID: 39154047 PMCID: PMC11330497 DOI: 10.1038/s41514-024-00166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Heterochronic parabiosis consists of surgically connecting the circulatory systems of a young and an old animal. This technique serves as a model to study circulating factors that accelerate aging in young organisms exposed to old blood or induce rejuvenation in old organisms exposed to young blood. Despite the promising results, the exact cellular and molecular mechanisms remain unclear, so this study aims to explore and elucidate them in more detail.
Collapse
|
4
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Liu J, Wang Y, Gao B, Zhang K, Li H, Ren J, Huo F, Zhao B, Zhang L, Zhang S, He H. Ionic Liquid Gating Induces Anomalous Permeation through Membrane Channel Proteins. J Am Chem Soc 2024; 146:13588-13597. [PMID: 38695646 DOI: 10.1021/jacs.4c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.
Collapse
Affiliation(s)
- Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Kun Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Baofeng Zhao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Sleem B, El Rassi C, Zareef R, Bitar F, Arabi M. NT-proBNP cardiac value in COVID-19: a focus on the paediatric population. Cardiol Young 2024; 34:959-968. [PMID: 38528805 DOI: 10.1017/s1047951124000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
NT-proBNP is a peptide related to brain natriuretic peptide, a cardiac biomarker and a member of the natriuretic family of peptides. NT-proBNP has demonstrated its clinical utility in the assessment of a wide spectrum of cardiac manifestations. It is also considered a more precise diagnostic and prognostic cardiac biomarker than brain natriuretic peptide. With the appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 virus and the subsequent COVID-19 pandemic, diagnosis of heart implications began to pose an increasing struggle for the physician. Echocardiography is considered a central means of evaluating cardiac disorders like heart failure, and it is considered a reliable method. However, other diagnostic methods are currently being explored, one of which involves the assessment of NT-proBNP levels. In the literature that involves the adult population, significant positive correlations were drawn between the levels of NT-proBNP and COVID-19 outcomes such as high severity and fatality. In the paediatric population, however, the literature is scarce, and most of the investigations assess NT-proBNP in the context of Multiple Inflammatory Syndrome in Children, where studies have shown that cohorts with this syndrome had elevated levels of NT-proBNP when compared to non-syndromic cohorts. Thus, more large-scale studies on existing COVID-19 data should be carried out in the paediatric population to further understand the prognostic and diagnostic roles of NT-proBNP.
Collapse
Affiliation(s)
- Bshara Sleem
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christophe El Rassi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Bitar
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Soleilhavoup S, Essig M, Levassort H. [Hydrosodium balance in aging]. SOINS. GERONTOLOGIE 2024; 29:21-30. [PMID: 38331521 DOI: 10.1016/j.sger.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
One of the kidney's major functions is to adjust the water and sodium balance in order to maintain a state of equilibrium. In the course of aging, even in the absence of renal pathology, changes are observed not only in renal macrostructure (reduction in kidney size, increase in the number of cysts), but also in microstructure (arteriosclerosis, glomerulosclerosis, fibrosis and tubular atrophy). All these changes can disrupt the homeostasis of water and sodium balances. The aim of this article is to review the physiology of water and sodium stores, and to assess the impact of aging on the regulatory loops of these different systems.
Collapse
Affiliation(s)
- Sébastien Soleilhavoup
- Service de néphrologie, Université Paris-Saclay, Site Ambroise-Paré, AP-HP, 9 avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| | - Marie Essig
- Service de néphrologie, Université Paris-Saclay, Site Ambroise-Paré, AP-HP, 9 avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France; Inserm UMRS 1018, Équipe épidémiologie clinique, Université Paris-Saclay, UVSQ, CESP, Villejuif, France
| | - Hélène Levassort
- Service de néphrologie, Université Paris-Saclay, Site Ambroise-Paré, AP-HP, 9 avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France; Inserm UMRS 1018, Équipe épidémiologie clinique, Université Paris-Saclay, UVSQ, CESP, Villejuif, France; Service de gériatrie, Université Paris-Saclay, Site Ambroise-Paré, AP-HP, 9 avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
8
|
Luo S, Zuo Y, Cui X, Zhang M, Jin H, Hong L. Effects of liraglutide on ANP secretion and cardiac dynamics. Endocr Connect 2023; 12:e230176. [PMID: 37681442 PMCID: PMC10563649 DOI: 10.1530/ec-23-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4-/- mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9-39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9-39. Exendin9-39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9-39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9-39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4-/- mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.
Collapse
Affiliation(s)
- Shenghe Luo
- College of Pharmacy, Yanbian University, Yanji, China
| | - Yunhui Zuo
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Xiaotian Cui
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Meiping Zhang
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Honghua Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
9
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
10
|
García E, Gil P, Miñambres I, Benitez-Amaro A, Rodríguez C, Claudi L, Julve J, Benitez S, Sánchez-Quesada JL, Rives J, Garcia-Moll X, Vilades D, Perez A, Llorente-Cortes V. Increased sLRP1 and decreased atrial natriuretic peptide plasma levels in newly diagnosed T2DM patients are normalized after optimization of glycemic control. Front Endocrinol (Lausanne) 2023; 14:1236487. [PMID: 37635956 PMCID: PMC10450024 DOI: 10.3389/fendo.2023.1236487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Background Low-density lipoprotein receptor-related protein 1 (LRP1) negatively modulates circulating atrial natriuretic peptide (ANP) levels. Both molecules are involved in the regulation of cardiometabolism. Objectives To evaluate soluble LRP1 (sLRP1) and ANP levels in people with newly diagnosed type 2 diabetes mellitus (T2DM) and determine the effects of metabolic optimization. Methods This single-center longitudinal observational study recruited patients with newly diagnosed T2DM (n = 29, HbA1c > 8.5%), and 12 healthy control, age- and sex-matched volunteers. sLRP1 and ANP levels were measured by immunoassays at T2DM onset and at one year after optimization of glycemic control (HbA1c ≤ 6.5%). Results T2DM had higher sLRP1 levels than the control group (p = 0.014) and lower ANP levels (p =0.002). At 12 months, 23 T2DM patients reached the target of HbA1c ≤ 6.5%. These patients significantly reduced sLRP1 and increased ANP levels. Patients who did not achieve HbA1c < 6.5% failed to normalize sLRP1 and ANP levels. There was an inverse correlation in the changes in sLRP1 and ANP (p = 0.031). The extent of sLRP1 changes over 12 months of metabolic control positively correlated with those of total cholesterol, LDL cholesterol, TG, TG/HDLc, and apolipoprotein B. Conclusions Newly diagnosed T2DM patients have an increased sLRP1/ANP ratio, and increased sLRP1 and decreased ANP levels are normalized in the T2DM patients that reached an strict glycemic and metabolic control. sLRP1/ANP ratio could be a reliable marker of cardiometabolic function.
Collapse
Affiliation(s)
- Eduardo García
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pedro Gil
- Endocrinology and Nutrition Service, Hospital de la Santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
| | - Inka Miñambres
- Endocrinology and Nutrition Service, Hospital de la Santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Claudia Rodríguez
- Endocrinology and Nutrition Service, Hospital de la Santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
| | - Lene Claudi
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Endocrinology and Nutrition Service, Hospital de la Santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benitez
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luís Sánchez-Quesada
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Rives
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
| | - Xavier Garcia-Moll
- Cardiology Department, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - David Vilades
- Cardiology Department, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
- Cardiac Imaging Unit, Cardiology Department, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Antonio Perez
- Endocrinology and Nutrition Service, Hospital de la Santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicenta Llorente-Cortes
- Institut de Recerca de l’Hospital de la santa Creu i Sant Pau, Sant Quintí, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Quintí, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Tang Y, Zhang D, Chang Y, Zheng J. Atrial Natriuretic Peptide Associated with Cardiovascular Diseases Inhibits Amyloid-β Aggregation via Cross-Seeding. ACS Chem Neurosci 2023; 14:312-322. [PMID: 36577130 DOI: 10.1021/acschemneuro.2c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both cardiovascular diseases (CVDs) and Alzheimer's disease (AD) share some common risk factors (e.g., age, obesity, oxidative stress, inflammation, hypertension) that contribute to their overlapping pathogenesis, indicating a "head-to-heart" pathological connection between CVDs and AD. To explore this potential connection at the protein level, we study the potential cross-seeding (heterotypic interactions) between CVD-associated atrial natriuretic peptide (ANP) and AD-associated β-amyloid (Aβ). Collective aggregation and cell assays demonstrate the cross-seeding of ANP with different Aβ species including monomers, oligomers, and fibrils with high binding affinity (KD = 1.234-1.797 μM) in a dose-dependent manner. Such ANP-induced cross-seeding also modifies the Aβ aggregation pathway, fibril morphology, and cell deposition pattern by inhibiting Aβ fibrillization from small aggregates, disassembling preformed Aβ fibrils, and alleviating Aβ-associated cytotoxicity. Finally, using transgenic C. elegans worms that express the human muscle-specific Aβ1-42, ANP can also effectively delay Aβ-induced worm paralysis, decrease Aβ plaques in worm brains, and reduce reactive oxygen species (ROS) production, confirming its in vivo inhibition ability to prevent neurodevelopmental toxicity in worms. This work discovers not only a new cross-seeding system between the two disease-related proteins but also a new finding that ANP possesses a new biological function as an Aβ inhibitor in the nonaggregated state.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
13
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
14
|
Ang WF, Koh CY, Kini RM. From Snake Venoms to Therapeutics: A Focus on Natriuretic Peptides. Pharmaceuticals (Basel) 2022; 15:ph15091153. [PMID: 36145374 PMCID: PMC9502559 DOI: 10.3390/ph15091153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Snake venom is a cocktail of multifunctional biomolecules that has evolved with the purpose of capturing prey and for defense. These biomolecules are classified into different classes based on their functions. They include three-finger toxins, natriuretic peptides, phospholipases and metalloproteinases. The focus for this review is on the natriuretic peptide (NP), which is an active component that can be isolated from the venoms of vipers and mambas. In these venoms, NPs contribute to the lowering of blood pressure, causing a rapid loss of consciousness in the prey such that its mobility is reduced, paralyzing the prey, and often death follows. Over the past 30 years since the discovery of the first NP in the venom of the green mamba, venom NPs have shown potential in the development of drug therapy for heart failure. Venom NPs have long half-lives, different pharmacological profiles, and may also possess different functions in comparison to the mammalian NPs. Understanding their mechanisms of action provides the strategies needed to develop new NPs for treatment of heart failure. This review summarizes the venom NPs that have been identified over the years and how they can be useful in drug development.
Collapse
Affiliation(s)
- Wei Fong Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| |
Collapse
|