1
|
Shoaib MA, Chuah JH, Ali R, Dhanalakshmi S, Hum YC, Khalil A, Lai KW. Fully Automatic Left Ventricle Segmentation Using Bilateral Lightweight Deep Neural Network. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010124. [PMID: 36676073 PMCID: PMC9864753 DOI: 10.3390/life13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The segmentation of the left ventricle (LV) is one of the fundamental procedures that must be performed to obtain quantitative measures of the heart, such as its volume, area, and ejection fraction. In clinical practice, the delineation of LV is still often conducted semi-automatically, leaving it open to operator subjectivity. The automatic LV segmentation from echocardiography images is a challenging task due to poorly defined boundaries and operator dependency. Recent research has demonstrated that deep learning has the capability to employ the segmentation process automatically. However, the well-known state-of-the-art segmentation models still lack in terms of accuracy and speed. This study aims to develop a single-stage lightweight segmentation model that precisely and rapidly segments the LV from 2D echocardiography images. In this research, a backbone network is used to acquire both low-level and high-level features. Two parallel blocks, known as the spatial feature unit and the channel feature unit, are employed for the enhancement and improvement of these features. The refined features are merged by an integrated unit to segment the LV. The performance of the model and the time taken to segment the LV are compared to other established segmentation models, DeepLab, FCN, and Mask RCNN. The model achieved the highest values of the dice similarity index (0.9446), intersection over union (0.8445), and accuracy (0.9742). The evaluation metrics and processing time demonstrate that the proposed model not only provides superior quantitative results but also trains and segments the LV in less time, indicating its improved performance over competing segmentation models.
Collapse
Affiliation(s)
- Muhammad Ali Shoaib
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Faculty of Information and Communication Technology, BUITEMS, Quetta 87300, Pakistan
| | - Joon Huang Chuah
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Raza Ali
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Faculty of Information and Communication Technology, BUITEMS, Quetta 87300, Pakistan
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering (DMBE), Lee Kong Chian Faculty of Engineering and Science (LKC FES), Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Malaysia
| | - Azira Khalil
- Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
2
|
Shoaib MA, Lai KW, Chuah JH, Hum YC, Ali R, Dhanalakshmi S, Wang H, Wu X. Comparative studies of deep learning segmentation models for left ventricle segmentation. Front Public Health 2022; 10:981019. [PMID: 36091529 PMCID: PMC9453312 DOI: 10.3389/fpubh.2022.981019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023] Open
Abstract
One of the primary factors contributing to death across all age groups is cardiovascular disease. In the analysis of heart function, analyzing the left ventricle (LV) from 2D echocardiographic images is a common medical procedure for heart patients. Consistent and accurate segmentation of the LV exerts significant impact on the understanding of the normal anatomy of the heart, as well as the ability to distinguish the aberrant or diseased structure of the heart. Therefore, LV segmentation is an important and critical task in medical practice, and automated LV segmentation is a pressing need. The deep learning models have been utilized in research for automatic LV segmentation. In this work, three cutting-edge convolutional neural network architectures (SegNet, Fully Convolutional Network, and Mask R-CNN) are designed and implemented to segment the LV. In addition, an echocardiography image dataset is generated, and the amount of training data is gradually increased to measure segmentation performance using evaluation metrics. The pixel's accuracy, precision, recall, specificity, Jaccard index, and dice similarity coefficients are applied to evaluate the three models. The Mask R-CNN model outperformed the other two models in these evaluation metrics. As a result, the Mask R-CNN model is used in this study to examine the effect of training data. For 4,000 images, the network achieved 92.21% DSC value, 85.55% Jaccard index, 98.76% mean accuracy, 96.81% recall, 93.15% precision, and 96.58% specificity value. Relatively, the Mask R-CNN outperformed other architectures, and the performance achieves stability when the model is trained using more than 4,000 training images.
Collapse
Affiliation(s)
- Muhammad Ali Shoaib
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Faculty of Information and Communication Technology, BUITEMS, Quetta, Pakistan
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,*Correspondence: Khin Wee Lai
| | - Joon Huang Chuah
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Raza Ali
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Faculty of Information and Communication Technology, BUITEMS, Quetta, Pakistan
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India,Samiappan Dhanalakshmi
| | - Huanhuan Wang
- Institute of Medical Information Security, Xuzhou Medical University, Xuzhou, China
| | - Xiang Wu
- Institute of Medical Information Security, Xuzhou Medical University, Xuzhou, China,Xiang Wu
| |
Collapse
|