1
|
Zhan Y, Hao Y, Wang X, Guo D. Advances of artificial intelligence in clinical application and scientific research of neuro-oncology: Current knowledge and future perspectives. Crit Rev Oncol Hematol 2025; 209:104682. [PMID: 40032186 DOI: 10.1016/j.critrevonc.2025.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Brain tumors refer to the abnormal growths that occur within the brain's tissue, comprising both primary neoplasms and metastatic lesions. Timely detection, precise staging, suitable treatment, and standardized management are of significant clinical importance for extending the survival rates of brain tumor patients. Artificial intelligence (AI), a discipline within computer science, is leveraging its robust capacity for information identification and combination to revolutionize traditional paradigms of oncology care, offering substantial potential for precision medicine. This article provides an overview of the current applications of AI in brain tumors, encompassing the primary AI technologies, their working mechanisms and working workflow, the contributions of AI to brain tumor diagnosis and treatment, as well as the role of AI in brain tumor scientific research, particularly in drug innovation and revealing tumor microenvironment. Finally, the paper addresses the existing challenges, potential solutions, and the future application prospects. This review aims to enhance our understanding of the application of AI in brain tumors and provide valuable insights for forthcoming clinical applications and scientific inquiries.
Collapse
Affiliation(s)
- Yankun Zhan
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Yanying Hao
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China.
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Berghout T. The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection. J Imaging 2024; 11:2. [PMID: 39852315 PMCID: PMC11766058 DOI: 10.3390/jimaging11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification. Despite these advancements, comprehensive reviews synthesizing recent findings remain scarce. By analyzing over 100 research papers over past half-decade (2019-2024), this review fills that gap, exploring the latest methods and paradigms, summarizing key concepts, challenges, datasets, and offering insights into future directions for brain tumor detection using deep learning. This review also incorporates an analysis of previous reviews and targets three main aspects: feature extraction, segmentation, and classification. The results revealed that research primarily focuses on Convolutional Neural Networks (CNNs) and their variants, with a strong emphasis on transfer learning using pre-trained models. Other methods, such as Generative Adversarial Networks (GANs) and Autoencoders, are used for feature extraction, while Recurrent Neural Networks (RNNs) are employed for time-sequence modeling. Some models integrate with Internet of Things (IoT) frameworks or federated learning for real-time diagnostics and privacy, often paired with optimization algorithms. However, the adoption of eXplainable AI (XAI) remains limited, despite its importance in building trust in medical diagnostics. Finally, this review outlines future opportunities, focusing on image quality, underexplored deep learning techniques, expanding datasets, and exploring deeper learning representations and model behavior such as recurrent expansion to advance medical imaging diagnostics.
Collapse
Affiliation(s)
- Tarek Berghout
- Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria
| |
Collapse
|
3
|
Zeng L, Zhang HH. Robust brain MRI image classification with SIBOW-SVM. Comput Med Imaging Graph 2024; 118:102451. [PMID: 39515189 DOI: 10.1016/j.compmedimag.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Primary Central Nervous System tumors in the brain are among the most aggressive diseases affecting humans. Early detection and classification of brain tumor types, whether benign or malignant, glial or non-glial, is critical for cancer prevention and treatment, ultimately improving human life expectancy. Magnetic Resonance Imaging (MRI) is the most effective technique for brain tumor detection, generating comprehensive brain scans. However, human examination can be error-prone and inefficient due to the complexity, size, and location variability of brain tumors. Recently, automated classification techniques using machine learning methods, such as Convolutional Neural Networks (CNNs), have demonstrated significantly higher accuracy than manual screening. However, deep learning-based image classification methods, including CNNs, face challenges in estimating class probabilities without proper model calibration (Guo et al., 2017; Minderer et al., 2021). In this paper, we propose a novel brain tumor image classification method called SIBOW-SVM, which integrates the Bag-of-Features model with SIFT feature extraction and weighted Support Vector Machines. This new approach can effectively extract hidden image features, enabling differentiation of various tumor types, provide accurate label predictions, and estimate probabilities of images belonging to each class, offering high-confidence classification decisions. We have also developed scalable and parallelable algorithms to facilitate the practical implementation of SIBOW-SVM for massive image datasets. To benchmark our method, we apply SIBOW-SVM to a public dataset of brain tumor MRI images containing four classes: glioma, meningioma, pituitary, and normal. Our results demonstrate that the new method outperforms state-of-the-art techniques, including CNNs, in terms of uncertainty quantification, classification accuracy, computational efficiency, and data robustness.
Collapse
Affiliation(s)
- Liyun Zeng
- Statistics and Data Science GIDP, University of Arizona, Tucson, Arizona 85721, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
4
|
Lumini A, Roberto GF, Neves LA, Martins AS, do Nascimento MZ. Percolation Images: Fractal Geometry Features for Brain Tumor Classification. ADVANCES IN NEUROBIOLOGY 2024; 36:557-570. [PMID: 38468053 DOI: 10.1007/978-3-031-47606-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a "percolation" image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.
Collapse
Affiliation(s)
- Alessandra Lumini
- Department of Computer Science and Engineering, University of Bologna, Cesena, FC, Italy.
| | - Guilherme Freire Roberto
- Institute of Mathematics and Computer Science (ICMC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Leandro Alves Neves
- Department of Computer Science and Statistics (DCCE), São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | | | | |
Collapse
|
5
|
Xie Y, Zaccagna F, Rundo L, Testa C, Agati R, Lodi R, Manners DN, Tonon C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12081850. [PMID: 36010200 PMCID: PMC9406354 DOI: 10.3390/diagnostics12081850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Convolutional neural networks (CNNs) constitute a widely used deep learning approach that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some critical challenges in moving towards clinic application. The main objective of this work is to present a comprehensive review of studies using CNN architectures to classify brain tumors using MR images with the aim of identifying useful strategies for and possible impediments in the development of this technology. Relevant articles were identified using a predefined, systematic procedure. For each article, data were extracted regarding training data, target problems, the network architecture, validation methods, and the reported quantitative performance criteria. The clinical relevance of the studies was then evaluated to identify limitations by considering the merits of convolutional neural networks and the remaining challenges that need to be solved to promote the clinical application and development of CNN algorithms. Finally, possible directions for future research are discussed for researchers in the biomedical and machine learning communities. A total of 83 studies were identified and reviewed. They differed in terms of the precise classification problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning methods for brain tumor classification. Many networks demonstrated good performance, and it is not evident that any specific methodological choice greatly outperforms the alternatives, especially given the inconsistencies in the reporting of validation methods, performance metrics, and training data encountered. Few studies have focused on clinical usability.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy;
| | - Claudia Testa
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Correspondence:
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| |
Collapse
|
6
|
An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115645] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain tumors are considered one of the most serious, prominent and life-threatening diseases globally. Brain tumors cause thousands of deaths every year around the globe because of the rapid growth of tumor cells. Therefore, timely analysis and automatic detection of brain tumors are required to save the lives of thousands of people around the globe. Recently, deep transfer learning (TL) approaches are most widely used to detect and classify the three most prominent types of brain tumors, i.e., glioma, meningioma and pituitary. For this purpose, we employ state-of-the-art pre-trained TL techniques to identify and detect glioma, meningioma and pituitary brain tumors. The aim is to identify the performance of nine pre-trained TL classifiers, i.e., Inceptionresnetv2, Inceptionv3, Xception, Resnet18, Resnet50, Resnet101, Shufflenet, Densenet201 and Mobilenetv2, by automatically identifying and detecting brain tumors using a fine-grained classification approach. For this, the TL algorithms are evaluated on a baseline brain tumor classification (MRI) dataset, which is freely available on Kaggle. Additionally, all deep learning (DL) models are fine-tuned with their default values. The fine-grained classification experiment demonstrates that the inceptionresnetv2 TL algorithm performs better and achieves the highest accuracy in detecting and classifying glioma, meningioma and pituitary brain tumors, and hence it can be classified as the best classification algorithm. We achieve 98.91% accuracy, 98.28% precision, 99.75% recall and 99% F-measure values with the inceptionresnetv2 TL algorithm, which out-performs the other DL algorithms. Additionally, to ensure and validate the performance of TL classifiers, we compare the efficacy of the inceptionresnetv2 TL algorithm with hybrid approaches, in which we use convolutional neural networks (CNN) for deep feature extraction and a Support Vector Machine (SVM) for classification. Similarly, the experiment’s results show that TL algorithms, and inceptionresnetv2 in particular, out-perform the state-of-the-art DL algorithms in classifying brain MRI images into glioma, meningioma, and pituitary. The hybrid DL approaches used in the experiments are Mobilnetv2, Densenet201, Squeeznet, Alexnet, Googlenet, Inceptionv3, Resnet50, Resnet18, Resnet101, Xception, Inceptionresnetv3, VGG19 and Shufflenet.
Collapse
|
7
|
El Kader IA, Xu G, Shuai Z, Brahim EMS, Saminu S. An Efficient Convolutional Neural Network Model for Brain MRI Segmentation. WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 2022; 19:77-84. [DOI: 10.37394/23208.2022.19.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Medical image analysis is a very interesting research area, and it is a significant challenge for researchers. Due to the complexity of the brain structure, accurate diagnosis of brain tumors is extremely difficult. In recent years, research focused on medical image processing to solve this problem by relying on deep learning techniques, and it has achieved good results in this field. This paper proposes an efficient convolutional neural network model for MR brain image segmentation and analysis. The novel model consists of segmentation efficient-CNN and pre-efficient-CNN blocks for dataset diminution and improvement blocks. The unique efficient-CNN is specially designed according to the model proposed by ASCNN (application) CNN-specific) to perform unidirectional and transverse feature extraction and tumor and pixel classification. The recommended Full-ReLU activation feature halves the number of cores in a high-coil filtered winding layer without reducing process quality. In this specific efficient-CNN consists of 8 convolutional layers and 110 kernels. The experiment results were done using the MR brain database from the Arizona university, including eluding with and without tumor images. The proposal model achieved an accuracy of 97.2% to 98%, which proves the efficiency of the model and its ability to assist in the early diagnosis of brain tumors with sufficient accuracy to support the doctors' decision during diagnosis.
Collapse
Affiliation(s)
- Isselmou Abd El Kader
- School of Health Science and Biomedical Engineering, Hebei University of Technology. Tianjin City, CHINA
| | - Guizhi Xu
- School of Health Science and Biomedical Engineering, Hebei University of Technology. Tianjin City, CHINA
| | - Zhang Shuai
- School of Health Science and Biomedical Engineering, Hebei University of Technology. Tianjin City, CHINA
| | | | - Sani Saminu
- School of Health Science and Biomedical Engineering, Hebei University of Technology. Tianjin City, CHINA
| |
Collapse
|
8
|
Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:1104611. [PMID: 34548850 PMCID: PMC8423572 DOI: 10.1155/2021/1104611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
In order to explore the effect of convolutional neural network (CNN) algorithm based on deep learning on magnetic resonance imaging (MRI) images of brain tumor patients and evaluate the practical value of MRI image features based on deep learning algorithm in the clinical diagnosis and nursing of malignant tumors, in this study, a brain tumor MRI image model based on the CNN algorithm was constructed, and 80 patients with brain tumors were selected as the research objects. They were divided into an experimental group (CNN algorithm) and a control group (traditional algorithm). The patients were nursed in the whole process. The macroscopic characteristics and imaging index of the MRI image and anxiety of patients in two groups were compared and analyzed. In addition, the image quality after nursing was checked. The results of the study revealed that the MRI characteristics of brain tumors based on CNN algorithm were clearer and more accurate in the fluid-attenuated inversion recovery (FLAIR), MRI T1, T1c, and T2; in terms of accuracy, sensitivity, and specificity, the mean value was 0.83, 0.84, and 0.83, which had obvious advantages compared with the traditional algorithm (P < 0.05). The patients in the nursing group showed lower depression scores and better MRI images in contrast to the control group (P < 0.05). Therefore, the deep learning algorithm can further accurately analyze the MRI image characteristics of brain tumor patients on the basis of conventional algorithms, showing high sensitivity and specificity, which improved the application value of MRI image characteristics in the diagnosis of malignant tumors. In addition, effective nursing for patients undergoing analysis and diagnosis on brain tumor MRI image characteristics can alleviate the patient's anxiety and ensure that high-quality MRI images were obtained after the examination.
Collapse
|