1
|
Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms 2024; 12:1051. [PMID: 38930432 PMCID: PMC11205376 DOI: 10.3390/microorganisms12061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI's significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI's utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI's potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI's versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.
Collapse
Affiliation(s)
- Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA;
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, Dearborn, MI 48126, USA;
| | - Rnda I. Ashgar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Arshad Jawed
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Mohammed Ahmed Hassani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Sajad Ahmad Dar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| |
Collapse
|
2
|
Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BJ, Chellappan DK. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024; 10:e25754. [PMID: 38370192 PMCID: PMC10869876 DOI: 10.1016/j.heliyon.2024.e25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - B.H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, UK
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
3
|
Baddal B, Taner F, Uzun Ozsahin D. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics (Basel) 2024; 14:484. [PMID: 38472956 DOI: 10.3390/diagnostics14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Healthcare-associated infections (HAIs) are the most common adverse events in healthcare and constitute a major global public health concern. Surveillance represents the foundation for the effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive. Artificial intelligence (AI) and machine learning (ML) have the potential to support the development of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient risk stratification as well as the prediction and timely detection and prevention of infections. AI-supported systems have so far been explored for clinical laboratory testing and imaging diagnosis, antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support tools in terms of HAIs. This review aims to provide a comprehensive summary of the current literature on AI applications in the field of HAIs and discuss the future potentials of this emerging technology in infection practice. Following the PRISMA guidelines, this study examined the articles in databases including PubMed and Scopus until November 2023, which were screened based on the inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements in the field, we aim to highlight the potential applications of AI in the field, report related issues and shortcomings and discuss the future directions.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| |
Collapse
|
4
|
Ji L, Mao R, Wu J, Ge C, Xiao F, Xu X, Xie L, Gu X. Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks. Diagnostics (Basel) 2022; 12:2478. [PMID: 36292167 PMCID: PMC9601165 DOI: 10.3390/diagnostics12102478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers. Early diagnosis plays a critical role in the treatment of NPC. To aid diagnosis, deep learning methods can provide interpretable clues for identifying NPC from magnetic resonance images (MRI). To identify the optimal models, we compared the discrimination performance of hierarchical and simple layered convolutional neural networks (CNN). Retrospectively, we collected the MRI images of patients and manually built the tailored NPC image dataset. We examined the performance of the representative CNN models including shallow CNN, ResNet50, ResNet101, and EfficientNet-B7. By fine-tuning, shallow CNN, ResNet50, ResNet101, and EfficientNet-B7 achieved the precision of 72.2%, 94.4%, 92.6%, and 88.4%, displaying the superiority of deep hierarchical neural networks. Among the examined models, ResNet50 with pre-trained weights demonstrated the best classification performance over other types of CNN with accuracy, precision, and an F1-score of 0.93, 0.94, and 0.93, respectively. The fine-tuned ResNet50 achieved the highest prediction performance and can be used as a potential tool for aiding the diagnosis of NPC tumors.
Collapse
Affiliation(s)
- Li Ji
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Rongzhi Mao
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian Wu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Cheng Ge
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Feng Xiao
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaofeng Gu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|