1
|
Iram S, Ahmad KS, Shaheen I, Aljuwayid AM, Ashraf GA. Spectroscopic and chromatographic studies of chemical constituents of wild A.pindrow royle: facile foliar fuel for the synthesis of nanomaterials. Cell Biochem Biophys 2025; 83:679-688. [PMID: 39312155 DOI: 10.1007/s12013-024-01500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/03/2025]
Abstract
The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.pindrow leaves. The phytocompounds were noticed via chromatographic techniques; High-performance liquid chromatography (HPLC) as well as the Gas chromatography-mass spectroscopy (GC-MS) followed by spectroscopic analysis that is the Fourier transform infrared spectroscopy (FTIR) along with Ultraviolet-visible spectroscopy (UV-Vis). The reducing properties of the phytochemicals were investigated by efficiently synthesizing metal oxides nanoparticles (CoO NPs) by treating aqueous plant extract with Co(NO3). 6H2O aqueous complex. The newly synthesized NPs were characterized via X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission-scanning electron microscopy (FE-SEM). Finally, the GCMS, FTIR and UV-Vis identified the A.pindrow leaves biocomponents as capping and reducing mediator of the synthesized CoO nanoparticles. FTIR confirmed the prepartion of CoO NPs as well as the capping and stabilizing agents of A.Pindrow at 2378.31 cm-1, 1370.11 cm-1, 1260.57 cm-1, 937.4 cm-1 and 607.24 cm-1 having carboxylic acid, alcohols, aromatics, alkenes, aromatic amines, esters as well as ethers functional groups, flavonols and flavonoids phytochemicals. Moreover GCMS analysis revealed the dominating constituents of A.pindrow leaf extracts are carbohydrates, terpenoids, alkanoids, flavonoids as well as phenols. Furthermore, the antibacterial and bioactive agent, tannis was also observed in aqueous extract. These phytochemicals noticed in this current work, has antioxidant potential, that is why they have shown biomedical applications. The present manipulation, further articulated that, maximum phytochemicals extraction of A. pindrow leaves was illustrated in the aqueous extract as compared to ethyl acetate and ethanol.
Collapse
Affiliation(s)
- Sadia Iram
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Irum Shaheen
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Ahmed M Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing, 210098, China
- New Uzbekistan University, Mustaqillik Ave. 54, Tashkent, 100007, Uzbekistan
| |
Collapse
|
2
|
Iram S, Ahmad KS, Shaheen I, Aljuwayid AM, Ashraf GA. Synthesis and Analysis of Euphorbia cognata Boiss-Assisted Organic-Inorganic Complex: Photosynthesis and Stabilization of CoO Nanoparticles. Appl Biochem Biotechnol 2024; 196:7994-8008. [PMID: 38668840 DOI: 10.1007/s12010-024-04939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
Synthesis of metal oxide nanomaterials using phytochemicals has now been regarded as mutually exclusive to chemical synthesis techniques. Here, we have extracted, isolated, and characterized the phytochemicals of Euphorbia cognata Boiss leaf hydro-organic extract and utilized them as biofuel in the preparation of metal oxide nanoparticles (CoO NPs). To evaluate the chemical composition of bio templates, chromatographic techniques like high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) were being utilized. The reducing properties of the organic fuel were investigated by efficiently synthesizing CoO NPs by treating aqueous plant extract with an aqueous complex of Co(NO3)·6H2O. X-ray diffraction (XRD) was utilized for identification of newly prepared NPs, and composition of elements was inveterate via energy dispersive X-ray spectroscopy (EDX). The spherical-shaped morphology was noticed via field emission-scanning electron microscopy (FE-SEM), and the biocomponents of synthesized metal oxide were identified by GC-MS which has confirmed the active presence of monopolized octodrine, decanoic acid, cathinone, and acetic acid in the synthesized metal oxides NPs. Overall, the present study has demonstrated well the significant potential of E. cognata phytocompounds as fuel in the synthesis of nanomaterial.
Collapse
Affiliation(s)
- Sadia Iram
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Irum Shaheen
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Ahmed M Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing, 210098, China
- New Uzbekistan University, Mustaqillik Ave. 54, 100007, Tashkent, Uzbekistan
| |
Collapse
|
3
|
Yao L, Mei X, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A novel electrochemiluminescent sensor based on AgMOF@N-CD composites for sensitive detection of trilobatin. Analyst 2024; 149:5265-5276. [PMID: 39264159 DOI: 10.1039/d4an01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel electrochemiluminescent (ECL) sensor for highly sensitive detection of trilobatin (Tri) was developed based on silver metal-organic frameworks (AgMOFs) and nitrogen-doped carbon quantum dots (N-CDs). N-CDs exhibited high ECL intensity but poor ECL stability, while AgMOFs had a large specific surface area, high porosity, and good adsorption properties. Compositing both of them not only improved the ECL stability of N-CDs, but also enhanced the ECL strength of materials, so AgMOF@N-CD composites were used as the luminophore of the sensor. Under the optimized conditions, the ECL sensor showed a linear range of 1.0 × 10-7 M to 1.0 × 10-3 M for the detection of Tri, and the detection limit was as low as 5.99 × 10-8 M (S/N = 3). In addition, the sensor had excellent reproducibility, stability, and anti-interference ability. It could be utilized for the detection of Tri in real samples with recoveries of 95.78-102.26%, indicating that the constructed ECL sensor for detecting Tri possessed better application prospects.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit. Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
TONI NAD, GIRGIS JRA, HUSSEIN AW, THAGFAN FA, ABDEL-GABER R, ALI SE, MAREY AM, AL-NAJJAR MAA, ALKHUDHAYRI A, DKHIL MA. In vitro role of biosynthesized nanosilver from Allium sativum against helminths. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
6
|
Gacem MA, Abd-Elsalam KA. Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:669-698. [DOI: 10.1016/b978-0-12-824508-8.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Cao P, Wang G, Wei XM, Chen SL, Han JP. How to improve CHMs quality: Enlighten from CHMs ecological cultivation. CHINESE HERBAL MEDICINES 2021; 13:301-312. [PMID: 36118933 PMCID: PMC9476809 DOI: 10.1016/j.chmed.2021.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Chinese herbal medicines (CHMs) are one of the important bioresources of medicine, which works by unlocking nature's ability to prevent diseases and recover from illnesses. Recently, it has ascended to the world stage and become a global icon. Nowadays, a considerable of researches have focused on the quality evaluation of CHMs. However, it is difficult to meet the reasonable needs of human beings for safe drug use to evaluate the quality of a huge number of inferior goods for the CHMs contaminated by pesticides and heavy metals. Hence to explore an eligible medicinal plant cultivation pattern, which can provide high quality CHMs sustainably, is most promising. This review analyzed the situation and characteristics of medicinal plant resources in different periods, including wild-harvested and cultivated resources during different stages, putting forward that ecological cultivation must be the way to develop medicinal plant cultivation and to obtain high quality CHMs.
Collapse
Affiliation(s)
- Pei Cao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xue-min Wei
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shi-lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian-ping Han
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Patra JK, Shin HS, Das G. Characterization and Evaluation of Multiple Biological Activities of Silver Nanoparticles Fabricated from Dragon Tongue Bean Outer Peel Extract. Int J Nanomedicine 2021; 16:977-987. [PMID: 33603363 PMCID: PMC7886385 DOI: 10.2147/ijn.s290037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dragon tongue beans are a legume belonging to the Fabaceae family, are rich in protein, starch, fiber, and other micronutrients that have numerous health-promoting benefits. Its peel commonly the waste parts also contains lots of bioactive compounds. MATERIALS AND METHODS In the current research, dragon tongue bean peels (DtbP) extract is tested for the existence of phytochemicals. Ag nanoparticles are biosynthesized using DtbP extract. The generated DtbP silver nanoparticle characterization was accomplished using UV-Vis spectral analysis, FTIR spectral analysis, SEM analysis, EDX analysis, XRD analysis, zeta potential, and DLS study. Furthermore, comparative assessment on multi-biological activities of the biosynthesized Ag nanoparticles was accomplished by employing cytotoxicity (inhibition against HepG2 cancer cells), antidiabetic (α-glucosidase inhibition assay), and antioxidant (free-radical scavenging) analysis. RESULTS The characterization result of the DtbP-AgNPs demonstrated that the AgNPs synthesized within 24 h. The AgNPs are nearly spherical. The biological effect assay of AgNPs displayed that DtbP-AgNPs is having significant cytotoxicity, antidiabetic, and moderate antioxidant effect. This study results as a whole report the biosynthesis of DtbP-AgNPs utilizing the legume dragon tongue bean waste peel and assessment of their multiple biological activities. The synthesized DtbP-AgNPs could serve as a potential candidate in the pharmaceutical industries in the formulation of drugs for the treatment of several medical ailments concerning cancer, diabetes, etc.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, 10326, Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
9
|
Ahmad KS, Amjad I, Ali D. Adsorption and sugarcane-bagasse-derived activated carbon-based mitigation of 1-[2-(2-chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) urea-contaminated soils. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractBurgeoning pesticide usage in agriculture sector required to be evaluated by assessing the adsorption rate in soils. The herbicide triasulfuron was used in this research to analyze its sorption behavior in seven distinct soils using batch equilibrium methodology. The adsorption coefficient (Kd) values ranged from the 3.32 to 29.7 µg/mL. Peshawar soil displayed the highest Kd value because of the distinct physiochemical properties when compared with the other six samples. Gibbs free energy exhibited negative values displaying less contact between soil particles and pesticides, showing the exothermic nature of the phenomena. A negative association was observed between the pH of the soil samples and Kd (R2 = −0.71) but a direct relation with the organic content (R2 = 0.74). Triasulfuron mitigation was performed by the economical remediation of soils using acid-activated charcoal prepped from Saccharum officinarum husk. Activated carbon derived from biomass displayed the great potential for triasulfuron removal from soils.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Iqra Amjad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Traditional Herbal Remedies with a Multifunctional Therapeutic Approach as an Implication in COVID-19 Associated Co-Infections. COATINGS 2020. [DOI: 10.3390/coatings10080761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Co-infection in patients with viral infection as a predisposing factor is less focused on during epidemic outbreaks, resulting in increased morbidity and mortality. Recent studies showed that patients with coronavirus disease 2019 (COVID-19) often have both bacterial and fungal co-infections. In this study, sputum samples of 120 OPD (outdoor patients) suffering from respiratory tract infection (RTI) but negative for tuberculosis infection were collected with informed consent. Morphological, biochemical, and resistance criteria were used to classify isolates and to distinguish multidrug resistant (MDR) isolates, which were further classified on a molecular basis. We found that the isolates, including MDR strains, showed remarkable sensitivity against acetone and methanol extracts of Moringa oleifera, Adhatoda vasica, and Cassia fistula. The results strongly confirmed that multifactorial infections can produce MDR characteristics against antimicrobial drugs, which gave insight into the use of herbal drugs with their age-old traditional importance as having antiviral, antibacterial, antifungal, anti-inflammatory, and immunomodulatory effects. We conclude that apart from this, the anti-infective potential of these plants can be used in the future in the form of products such as cosmetics, pharmaceutical coatings, surface coatings, drug delivery vehicle coatings, and other bioengineered coatings for public use. Future studies are required to assess therapeutics for co-infective resistant strains and nosocomial infections with immune-enhancing effects, thereby promoting their function in holistic treatment and therapy of COVID-19 patients.
Collapse
|
11
|
Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1769662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatemeh Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Omid Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Samira Arab Salmanabadi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| |
Collapse
|
12
|
Shaheen I, Ahmad KS, Thomas AG, Compeán‐González CL, Jones R, Malik MA. Synthesis and analysis of ZnO‐CoMoO
4
incorporated organic compounds for efficient degradation of azo dye pollutants under dark ambient conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Irum Shaheen
- Department of Environmental SciencesFatima Jinnah Women University Rawalpindi Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental SciencesFatima Jinnah Women University Rawalpindi Pakistan
| | - Andrew Guy Thomas
- Department of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
- Sir Henry Royce InstituteThe University of Manchester Oxford Road, Manchester M13 9PL UK
| | - Claudia L. Compeán‐González
- Department of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Rosemary Jones
- Department of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Mohammad Azad Malik
- Department of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
13
|
Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Jaffri SB, Ahmad KS. Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9669-9685. [PMID: 31925686 DOI: 10.1007/s11356-020-07626-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles were fabricated in the presence and absence of light with silver nitrate and aqueous extract of Prunus cerasifera leaf via facile and one-pot green method. P. cerasifera leaf extract reduced and stabilized the nanoparticles with phytometabolites expunging the need for addition of external reducing agents. Optimized silver nanoparticle syntheses was done with variations in leaf extract concentration, time, temperature, and molarity for deciphering the photocatalytic, antifungal, and antibacterial potential of synthesized nanoparticles. Optical, compositional, and morphological analyses of the synthesized nanoparticles were done by UV-visible spectrometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Formation of silver nanoparticles was confirmed firstly through UV-Vis by exhibition of peaks with 400-450 nm. FTIR confirmed the presence of major organic groups responsible for reduction of nanoparticles. AFM confirmed the spherical morphology of the synthesized nanoparticles with remarkable dispersion without any agglomeration. Phytochemical analysis for P. cerasifera leaf metabolites was done by GC-MS. Spherical nanoparticles having a size range of 57-144 nm were obtained with face-centered cubic crystals. The average crystallite size obtained from XRD spectra was 2.34 nm. Enhanced photocatalytic first-order kinetics were obtained for persistent organic pollutants, i.e., crystal violet, methylene blue, and malachite green (R2 = 0.99, 0.99, 0.98) in less than 15 min. Biomedical and agricultural significance as an antibiotic drug and utilization as a fungicides substitute was explored against nine resistant microbes. Statistically significant variations were analyzed via one-way analysis of variance (ANOVA) and Kruskal-Wallis test and specific multi comparison tests. Active to highly active inhibition zones manifested the use of biogenic silver nanoparticles as potential candidate for applications in biological arenas and as environmental remediators.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
15
|
Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas A, Malik MA. Organic template-assisted green synthesis of CoMoO 4 nanomaterials for the investigation of energy storage properties. RSC Adv 2020; 10:8115-8129. [PMID: 35497827 PMCID: PMC9049887 DOI: 10.1039/c9ra09477f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 11/21/2022] Open
Abstract
Transitional metal oxide nanomaterials are considered to be potential electrode materials for supercapacitors. Therefore, in the past few decades, huge efforts have been devoted towards the sustainable synthesis of metal oxide nanomaterials. Herein, we report a synergistic approach to synthesize spherical-shaped CoMoO4 electrode materials using an inorganic-organic template via the hydrothermal route. As per the synthesis strategy, the precursor solution was reacted with the organic compounds of E. cognata to tailor the surface chemistry and morphology of CoMoO4 by organic species. The modified CoMoO4 nanomaterials revealed a particle size of 23 nm by X-ray diffraction. Furthermore, the synthesized material was scrutinized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. The optical band gap energy of 3.6 eV was calculated by a Tauc plot. Gas chromatography-mass spectrometry identified cyclobutanol (C4H8O) and octodrine (C8H19N) as the major stabilizing agents of the CoMoO4 nanomaterial. Finally, it was revealed that the bioorganic framework-derived CoMoO4 electrode exhibited a capacitance of 294 F g-1 by cyclic voltammetry with a maximum energy density of 7.3 W h kg-1 and power density of 7227.525 W kg-1. Consequently, the nanofeatures and organic compounds of E. cognata were found to enhance the electrochemical behaviour of the CoMoO4-fabricated electrode towards supercapacitor applications.
Collapse
Affiliation(s)
- Irum Shaheen
- Department of Environmental Sciences, Fatima Jinnah Women University Rawalpindi Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University Rawalpindi Pakistan
| | - Camila Zequine
- Department of Chemistry, Pittsburg State University 1701 South Broadway Street Pittsburg KS 66762 USA
| | - Ram K Gupta
- Department of Chemistry, Pittsburg State University 1701 South Broadway Street Pittsburg KS 66762 USA
| | - Andrew Thomas
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, Alan Turing Building, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Mohammad Azad Malik
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, Alan Turing Building, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
16
|
Singh AV, Jungnickel H, Leibrock L, Tentschert J, Reichardt P, Katz A, Laux P, Luch A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep 2020; 10:261. [PMID: 31937806 PMCID: PMC6959255 DOI: 10.1038/s41598-019-57136-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
The biomolecular imaging of cell-nanoparticle (NP) interactions using time-of-flight secondary ion mass spectrometry (ToF-SIMS) represents an evolving tool in nanotoxicology. In this study we present the three dimensional (3D) distribution of nanomaterials within biomolecular agglomerates using ToF-SIMS imaging. This novel approach was used to model the resistance of human alveolar A549 cells against gold (Au) ion toxicity through intra- and extracellular biomineralization. At low Au concentrations (≤1 mM HAuCl4) 3D-ToF-SIMS imaging reveals a homogenous intracellular distribution of Au-NPs in combination with polydisperse spherical NPs biomineralized in different layers on the cell surface. However, at higher precursor concentrations (≥2 mM) supplemented with biogenic spherical NPs as seeds, cells start to biosynthesize partially embedded long aspect ratio fiber-like Au nanostructures. Most interestingly, A549 cells seem to be able to sense the enhanced Au concentration. They change the chemical composition of the extracellular NP agglomerates from threonine-O-3-phosphate aureate to an arginine-Au(I)-imine. Furthermore they adopt the extracellular mineralization process from spheres to irregular structures to nanoribbons in a dose-dependent manner with increasing Au concentrations. The results achieved regarding size, shape and chemical specificity were cross checked by SEM-EDX and single particle (sp-)ICP-MS. Our findings demonstrate the potential of ToF-SIMS 3D imaging to better understand cell-NP interactions and their impact in nanotoxicology.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Harald Jungnickel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Lars Leibrock
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Aaron Katz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|