1
|
Chang WK, Wang CJ, Tsai TH, Sun FJ, Chen CH, Kuo KC, Chung HP, Tang YH, Chen YT, Wu KL, Wu JC, Lin CY, Zhang HB. The clinical application of traditional Chinese medicine NRICM101 in hospitalized patients with COVID-19. Expert Rev Anti Infect Ther 2024; 22:587-595. [PMID: 38288986 DOI: 10.1080/14787210.2024.2313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy and safety of NRICM101 in hospitalized patients with COVID-19. RESEARCH DESIGN AND METHODS We conducted a retrospective study from 20 April 2021 to 8 July 2021, and evaluated the safety and outcomes (mortality, hospital stay, mechanical ventilation, oxygen support, diarrhea, serum potassium) in COVID-19 patients. Propensity score matching at a 1:2 ratio was performed to reduce confounding factors. RESULTS A total of 201 patients were analyzed. The experimental group (n = 67) received NRICM101 and standard care, while the control group (n = 134) received standard care alone. No significant differences were observed in mortality (10.4% vs. 14.2%), intubation (13.8% vs. 11%), time to intubation (10 vs. 11 days), mechanical ventilation days (0 vs. 9 days), or oxygen support duration (6 vs. 5 days). However, the experimental group had a shorter length of hospitalization (odds ratio = 0.12, p = 0.043) and fewer mechanical ventilation days (odds ratio = 0.068, p = 0.008) in initially severe cases, along with an increased diarrhea risk (p = 0.035). CONCLUSION NRICM101 did not reduce in-hospital mortality. However, it shortened the length of hospitalization and reduced mechanical ventilation days in initially severe cases. Further investigation is needed.
Collapse
Affiliation(s)
- Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Kuo-Lun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hai-Bo Zhang
- Anesthesia, Medicine and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Wang Y, Tong L, Yang L, Ren B, Guo D. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:308-320. [PMID: 37779226 DOI: 10.1002/pca.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Ophiocordyceps gracilis is an entomopathogenic fungus and a precious traditional Chinese medicine with similar medicinal properties to Ophiocordyceps sinensis. However, information on the metabolite profiles of natural O. gracilis and its cultures is lacking, which limits their utilization. OBJECTIVE The metabolic variations and antioxidant activities of O. gracilis cultures and natural O. gracilis were analyzed to evaluate the nutritional and medicinal value of O. gracilis and its cultures. METHOD The metabolite profiles of O. gracilis cultures (fruiting bodies and aerial mycelia), natural O. gracilis, and natural O. sinensis were compared by LC-MS/MS coupled with multivariate data analysis. Furthermore, their antioxidant activities were evaluated based on their DPPH• , ABTS•+ , and • OH scavenging abilities. RESULTS A total of 612 metabolites were identified, and the metabolic compositions of the four Cordyceps samples were similar, with differences observed in the levels of some metabolites. There were 126 differential metabolites between natural O. gracilis and natural O. sinensis, among which fatty acids, carbohydrates, and secondary metabolites are predominant in natural O. gracilis. Furthermore, 116 differential metabolites between O. gracilis cultures and natural Cordyceps were identified, with generally higher levels in O. gracilis cultures than in natural Cordyceps. O. gracilis cultivated fruiting bodies exhibited the strongest antioxidant capacity among Cordyceps samples. Additionally, 46 primary and 24 secondary differential metabolites contribute to antioxidant activities. CONCLUSION This study provides a reference for the application of natural O. gracilis and its cultures in functional food and medicine from the perspective of metabolites and antioxidant capacity.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Linhui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Noman SM, Shafiq M, Bibi S, Mittal B, Yuan Y, Zeng M, Li X, Olawale OA, Jiao X, Irshad M. Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2977-2990. [PMID: 35939194 DOI: 10.1007/s11356-022-22197-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propagation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial community structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assessment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people's lives at risk of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches.
Collapse
Affiliation(s)
- Sohail M Noman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Milat University, Islamabad, 43600, Pakistan
- Department of Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Yunnan, Kunming, 650091, China
| | - Bharti Mittal
- Department of Science Education and Research, Nitte University, Deralakatte, Mangalore, 575018, India
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Muhammad Irshad
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, 0000, Hong Kong
| |
Collapse
|
4
|
In Silico and In Vitro Screening Constituents of Eclipta alba Leaf Extract to Reveal Antimicrobial Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3290790. [PMID: 36034950 PMCID: PMC9402321 DOI: 10.1155/2022/3290790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Phytochemicals have been shown to possess multiple bioactives and have been reported to showcase many medicinal effects. A similar kind of evaluation of phytoconstituents for their antimicrobial action has been reported, based on in vitro and in silico data. The goal of the research was to explore bioactive phytoconstituents of Eclipta alba leaf for antimicrobial activity. The antimicrobial activity was validated by both molecular docking and antimicrobial assay. Bioactive metabolites were identified using GC-MS. The antimicrobial and antimycobacterial activity of Eclipta alba leaves was investigated using the Kirby–Bauer well diffusion method and the rapid culture—MGIT™ DST method against a variety of human pathogens, as well as Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin. Eclipta alba’s GC-MS studies confirmed the detection of 17 bioactive constituents. The extract demonstrates the highest antibacterial activity against Escherichia coli (sensitive), Pseudomonas aeruginosa (sensitive) and methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa susceptible and MRSA (sensitive) with zone of inhibition of 27 mm, 24 mm, and 32 mm respectively. The extract showed no effect on Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin in antimycobacterial activity testing. Molecular docking investigation revealed that three compounds (phthalic acid, isobutyl octadecyl ester, hexadecanoic acid, 1(hydroxymethyl)1,2-ethanediylester, and 2,myristynoyl pantetheine) have generated the best results in terms of binding energies and significant interactions with key residues of target protein 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and confirm its activity as antimicrobial inhibitors. These two-dimensional plots show significant protein-ligand binding interactions (van der Waals interactions, hydrogen bond, alkyl, and Pi-alkyl interactions). ADMET (absorption, distribution, metabolism, excretion, and toxicity) results additionally support the drug-likeness characteristics of concluded potential compounds. The experimental and computational results demonstrated that methanolic extract of Eclipta alba leaves had antimicrobial effects for specific infections due to the presence of phytochemical compounds.
Collapse
|
5
|
Rabie AM. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS OMEGA 2022; 7:2960-2969. [PMID: 35071937 PMCID: PMC8767658 DOI: 10.1021/acsomega.1c05998] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
Abstract
Nucleoside analogues are among the most successful bioactive classes of druglike compounds in pharmaceutical chemistry as they are well-known for their numerous effective bioactivities in humans, especially as antiviral and anticancer agents. Coronavirus disease 2019 (COVID-19) is still untreatable, with its causing virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continuing to wreak havoc on the ground everywhere. This complicated international situation urged all concerned scientists, including medicinal chemists and drug discoverers, to search for a potent anti-COVID-19 drug. Cordycepin (3'-deoxyadenosine) is a known natural adenosine analogue of fungal origin, which could also be synthetically produced. This bioactive phytochemical compound is characterized by several proven strong pharmacological actions that may effectively contribute to the comprehensive treatment of COVID-19, with the antiviral activities being the leading ones. Some new studies predicted the possible inhibitory affinities of cordycepin against the principal SARS-CoV-2 protein targets (e.g., SARS-CoV-2 spike (S) protein, main protease (Mpro) enzyme, and RNA-dependent RNA polymerase (RdRp) enzyme) based on the computational approach. Interestingly, the current research showed, for the first time, that cordycepin is able to potently inhibit the multiplication of the new resistant strains of SARS-CoV-2 with a very minute in vitro anti-SARS-CoV-2 EC50 of about 2 μM, edging over both remdesivir and its active metabolite GS-441524. The ideal pharmacophoric features of the cordycepin molecule render it a typical inhibitor of SARS-CoV-2 replication, with its flexible structure open for most types of derivatization in the future. Briefly, the current findings further support and suggest the repurposing possibility of cordycepin against COVID-19 and greatly encourage us to confidently and rapidly begin its preclinical/clinical evaluations for the comprehensive treatment of COVID-19.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura 35511, Egypt
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Bibi S, Hasan MM, Wang YB, Papadakos SP, Yu H. Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Curr Med Chem 2022; 29:152-162. [PMID: 34420502 DOI: 10.2174/0929867328666210820114025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARSCoV- 2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. OBJECTIVE The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. METHODS Fungal derivative "Cordycepin" was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. RESULTS The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. CONCLUSION Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARSCoV- 2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902,Bangladesh
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| | - Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens,Greece
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan,China
| |
Collapse
|
7
|
Bhilare NV, Marulkar VS, Shirote PJ, Dombe SA, Pise VJ, Salve PL, Biradar SM, Yadav VD, Jadhav PD, Bodhe AA, Borkar SP, Ghadge PM, Shelar PA, Jadhav AV, Godse KC. Mannich Bases: Centrality in Cytotoxic Drug Design. Med Chem 2021; 18:735-756. [PMID: 34931967 DOI: 10.2174/1573406418666211220124119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Mannich bases identified by Professor Carl Mannich have been the most extensively explored scaffolds for more than 100 years now. The versatile biological roles that they play have promoted their applications in many clinical conditions. The present review highlights the application of Mannich bases as cytotoxic agents, categorizing them into synthetic, semisynthetic and prodrugs classes and gives an exhaustive account of the work reported in the last two decades. The methods of synthesis of these cytotoxic agents, their anti-cancer potential in various cell lines and promising leads for future drug development have also been discussed. Structure-activity relationships along with the targets on which these cytotoxic Mannich bases act have been included as well.
Collapse
Affiliation(s)
- Neha V Bhilare
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vinayak S Marulkar
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pramodkumar J Shirote
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Shailaja A Dombe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vilas J Pise
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pallavi L Salve
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Shantakumar M Biradar
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vishal D Yadav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Prakash D Jadhav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Anjali A Bodhe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Smita P Borkar
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Prachi M Ghadge
- Department of Pharmacology, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pournima A Shelar
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Apurva V Jadhav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Kirti C Godse
- Department of Pharmacology, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| |
Collapse
|