1
|
Sanchitra J, Debnath A, Singh AK, Jha AK, Singh RK. Discovery of novel HBV core protein inhibitors by high throughput virtual screening. Sci Rep 2025; 15:13054. [PMID: 40240438 PMCID: PMC12003855 DOI: 10.1038/s41598-025-97242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatitis B Virus (HBV) constitutes a chronic viral infection with limited therapeutic options and a significant global health challenge. The virus lifecycle intricacy significantly relies on the core protein crucial for virus structure stability and interaction with host cells thus contributing to the infection's persistence and severity. This study employs advanced techniques for the identification of novel core protein inhibitors through the screening of two chemical databases ZINC and BIMP utilizing computational methods such as structure-based virtual screening, drug-likeness, ADME, toxicity, consensus molecular docking, density functional theory, and 100 ns molecular dynamics simulation. The compound ZINC00674395 possesses high affinity and specificity towards core protein demonstrating drug-like properties, favorable ADME profiles, non-toxicity, and favorable electronic configuration with high stability at the core protein active site thus highlighting its potential as a therapeutic agent. These findings offer new insights into core protein interaction and pave the way for developing effective HBV therapeutics.
Collapse
Affiliation(s)
- Jahanvi Sanchitra
- Noida Institute of Engineering and Technology [Pharmacy Institute], 19 Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh, India
| | - Abhijit Debnath
- Noida Institute of Engineering and Technology [Pharmacy Institute], 19 Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Debnath A, Singh RK, Mazumder R, Mazumder A, Srivastava S, Chaudhary H, Mangal S, Sanchitra J, Tyagi PK, Kumar Singh S, Singh AK. Quest for discovering novel CDK12 inhibitor. J Recept Signal Transduct Res 2025; 45:1-21. [PMID: 39697035 DOI: 10.1080/10799893.2024.2441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CDK12 is essential for cellular processes like RNA processing, transcription, and cell cycle regulation, inhibiting cancer cell growth and facilitating macrophage invasion. CDK12 is a significant oncogenic factor in various cancers, including HER2-positive breast cancer, Anaplastic thyroid carcinoma, Hepatocellular carcinoma, prostate cancer, and Ewing sarcoma. It is also regarded as a potential biomarker, emphasizing its broader significance in oncology. Targeting CDK12 offers a promising strategy to develop therapy. Various monoclonal antibodies have drawn wide attention, but they are expensive compared to small-molecule inhibitors, limiting their accessibility and affordability for patients. Consequently, this research aims to identify effective CDK12 inhibitors using comprehensive high-throughput virtual screening. RASPD protocol has been employed to screen three different databases against the target followed by drug-likeness, molecular docking, ADME, toxicity, Consensus molecular docking, MD Simulation, and in-vitro studies MTT assay. The research conducted yielded one compound ZINC11784547 has demonstrated robust binding affinity, favorable ADME features, less toxicity, remarkable stability, and cytotoxic effect. The identified compound holds promise for promoting cancer cell death through CDK12 inhibition.
Collapse
Affiliation(s)
- Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Shikha Srivastava
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Hema Chaudhary
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, India
| | - Saloni Mangal
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Jahanvi Sanchitra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Ottu PO, Babalola OO, Oluwamodupe C, Oluwatobiloba AF, Kehinde IO, Akinola OA, Ibrahim SO, Elekofehinti OO. Investigation of Aframomum melegueta compounds as ERK5 inhibitor related to breast cancer via molecular docking and dynamic simulation. In Silico Pharmacol 2025; 13:18. [PMID: 39872469 PMCID: PMC11762040 DOI: 10.1007/s40203-025-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival. In this study, we explored the anticancer potential of bioactive compounds from Aframomum melegueta, a plant traditionally used in West African medicine. The 3D structure of ERK5 (PDB ID: 4B99) was prepared and optimized using the Schrödinger Protein Preparation Wizard. Six phytochemicals from Aframomum melegueta were screened for their binding affinities to ERK5 using GlideXP docking. Dihydrogingerenone A,1-(3,4-dihydroxy-5-methoxyphenyl)-7-(3,4-dihydroxyphenyl) heptane-3,5-diyldiacetate and Dihydrogingerenone C emerged as the lead compound, demonstrating a high docking score of - 9.659 kcal/mol, - 9.383 kcal/mol, and - 8.264 kcal/mol compared to standard anticancer drugs like Docetaxel (- 4.175 kcal/mol) and Temozolomide (- 5.443 kcal/mol). Post-docking analyses using MM-GBSA free energy calculations confirmed the compound's high binding stability, with van der Waals interactions and hydrogen bonding at critical residues such as Met140 playing a significant role. Pharmacokinetic profiling using ADME analysis showed that our compounds exhibited favorable drug-likeness properties, adhering to Lipinski's Rule of Five without violations. QSAR modeling and molecular dynamics (MD) simulations further validated its pharmacological potential. These findings suggest that Aframomum melegueta contains bioactive compounds with strong potential as ERK5 inhibitors, offering a novel approach to breast cancer treatment. Graphical abstract The molecular docking study of Dihydrogingerenone A, 1-(3, 4-dihydroxy-5-methoxyphenyl)-7-(3, 4-dihydroxyphenyl) heptane-3, 5-diyldiacetate, and Dihydrogingerenone C from Aframomum melegueta as effective breast cancer treatment.
Collapse
Affiliation(s)
- Paul Olamide Ottu
- Teady Bioscience Research Laboratory, Ilara Mokin, Ondo State Nigeria
| | | | - Cecilia Oluwamodupe
- Teady Bioscience Research Laboratory, Ilara Mokin, Ondo State Nigeria
- Phytomedicine, Molecular Biology and Bioinformatics lab, Department of Chemical Science (Biochemistry program), Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State Nigeria
| | | | | | - Olufemi Adebisi Akinola
- Teady Bioscience Research Laboratory, Ilara Mokin, Ondo State Nigeria
- Bioinformatics and Molecular Biology Lab, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | | | - Olusola Olalekan Elekofehinti
- Teady Bioscience Research Laboratory, Ilara Mokin, Ondo State Nigeria
- Bioinformatics and Molecular Biology Lab, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| |
Collapse
|
4
|
Broni E, Ashley C, Velazquez M, Khan S, Striegel A, Sakyi PO, Peracha S, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Miller WA. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int J Mol Sci 2023; 24:12612. [PMID: 37628792 PMCID: PMC10454645 DOI: 10.3390/ijms241612612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Bassani D, Moro S. Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies. Molecules 2023; 28:3906. [PMID: 37175316 PMCID: PMC10180087 DOI: 10.3390/molecules28093906] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The application of computational approaches in drug discovery has been consolidated in the last decades. These families of techniques are usually grouped under the common name of "computer-aided drug design" (CADD), and they now constitute one of the pillars in the pharmaceutical discovery pipelines in many academic and industrial environments. Their implementation has been demonstrated to tremendously improve the speed of the early discovery steps, allowing for the proficient and rational choice of proper compounds for a desired therapeutic need among the extreme vastness of the drug-like chemical space. Moreover, the application of CADD approaches allows the rationalization of biochemical and interactive processes of pharmaceutical interest at the molecular level. Because of this, computational tools are now extensively used also in the field of rational 3D design and optimization of chemical entities starting from the structural information of the targets, which can be experimentally resolved or can also be obtained with other computer-based techniques. In this work, we revised the state-of-the-art computer-aided drug design methods, focusing on their application in different scenarios of pharmaceutical and biological interest, not only highlighting their great potential and their benefits, but also discussing their actual limitations and eventual weaknesses. This work can be considered a brief overview of computational methods for drug discovery.
Collapse
Affiliation(s)
- Davide Bassani
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann—La Roche Ltd., 4070 Basel, Switzerland;
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
6
|
Mateev E, Kondeva-Burdina M, Georgieva M, Zlatkov A. Repurposing of FDA-approved drugs as dual-acting MAO-B and AChE inhibitors against Alzheimer's disease: An in silico and in vitro study. J Mol Graph Model 2023; 122:108471. [PMID: 37087882 DOI: 10.1016/j.jmgm.2023.108471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
An in silico consensus molecular docking approach and in vitro evaluations were adopted in the present study to explore a dataset of FDA-approved drugs as novel multitarget MAO-B/AChE agents in the treatment of Alzheimer's disease (AD). GOLD 5.3 and Glide were employed in the virtual assessments and consensus superimpositions of the obtained poses were applied to increase the reliability of the docking protocols. Furthermore, the top ranked molecules were subjected to binding free energy calculations using MM/GBSA, Induced fit docking (IFD) simulations, and a literature review. Consequently, the top four multitarget drugs were examined for their in vitro MAO-B and AChE inhibition effects. The consensus molecular docking identified Dolutegravir, Rebamipide, Loracarbef and Diflunisal as potential multitarget drugs. The biological data demonstrated that most of the docking scores were in good correlation with the in vitro experiments, however the theoretical simulations in the active site of MAO-B identified two false-positives - Rebamipide and Diflunisal. Dolutegravir and Loracarbef were accessed as active MAO-B inhibitors, while Dolutegravir, Rebamapide and Diflunisal as potential AChE inhibitors. The antiretroviral agent Dolutegravir exhibited the most potent multitarget activity - 41% inhibition of MAO-B (1 μM) and 68% inhibition of AChE (10 μM). Visualizations of the intermolecular interactions of Dolutegravir in the active sites of MAO-B and AChE revealed the formation of several stable hydrogen bonds. Overall, Dolutegravir was identified as a potential anti-AD drug, however further in vivo evaluations should be considered.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| |
Collapse
|
7
|
Lambo DJ, Lebedenko CG, McCallum PA, Banerjee IA. Molecular dynamics, MMGBSA, and docking studies of natural products conjugated to tumor-targeted peptide for targeting BRAF V600E and MERTK receptors. Mol Divers 2023; 27:389-423. [PMID: 35505173 DOI: 10.1007/s11030-022-10430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 02/08/2023]
Abstract
Recent studies have revealed that MERTK and BRAF V600E receptors have been found to be over-expressed in several types of cancers including melanoma, making these receptors targets for drug design. In this study, we have designed novel peptide conjugates with the natural products vanillic acid, thiazole-2-carboxylic acid, cinnamic acid, theanine, and protocatechuic acid. Each of these compounds was conjugated with the tumor targeting peptide sequence TAASGVRSMH, known to bind to NG2 and target tumor neovasculature. We examined their binding affinities and stability with MERTK and BRAF V600E receptors using molecular docking and molecular dynamics studies. Compared to the neat compounds, the peptide conjugates displayed higher binding affinity toward both receptors. In the case of MERTK, the most stable complexes were formed with di-theaninate-peptide, vanillate-peptide, and thiazole-2-amido peptide conjugates and binding occurred in the hinge region. Additionally, it was discovered that the peptide alone also had high binding ability and stability with the MERTK receptor. In the case of BRAF V600E, the peptide conjugates of protocatechuate, vanillate and thiazole-2-amido peptide conjugates showed the formation of the most stable complexes and binding occurred in the ATP binding cleft. Further analysis revealed that the number of hydrogen bonds and hydrophobic interactions played a critical role in enhanced stability of the complexes. Docking studies also revealed that binding affinities for NG2 were similar to MERTK and higher for BRAF V600E. MMGBSA studies of the trajectories revealed that the protocatechuate-peptide conjugate showed the highest binding energy with BRAF V600E while the peptide-TAASGVRSMH showed the highest binding energy with MERTK. ADME studies revealed that each of the compounds showed medium to high permeability toward MDCK cells and were not hERG blockers. Furthermore, the conjugates were not CYP inhibitors or substrates, but they were found to be Pgp substrates. Our results indicated that the protocatechuate-TAASGVRSMH, thiazole-2-amido-TAASGVRSMH, and vanillate-TAASGVRSMH conjugates may be furthered developed for in vitro and in vivo studies as novel tumor targeting compounds for tumor cells over-expressing BRAF V600E, while di-theaninate-amido-TAASGVRSMH and thiazole-2-amido-TAASGVRSMH conjugates may be developed for targeting MERTK receptors. These studies provide insight into the molecular interactions of natural product-peptide conjugates and their potential for binding to and targeting MERTK and BRAF V600E receptors in developing new therapeutics for targeting cancer.
Collapse
Affiliation(s)
- Dominic J Lambo
- Department of Chemistry, Fordham University, 441 E. Fordham Rd, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 E. Fordham Rd, Bronx, NY, 10458, USA
| | - Paige A McCallum
- Department of Chemistry, Fordham University, 441 E. Fordham Rd, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 E. Fordham Rd, Bronx, NY, 10458, USA.
| |
Collapse
|
8
|
Xu M, Shen C, Yang J, Wang Q, Huang N. Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening. ACS OMEGA 2022; 7:39417-39428. [PMID: 36340123 PMCID: PMC9632257 DOI: 10.1021/acsomega.2c05826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In recent years, large-scale structure-based virtual screening has attracted increasing levels of interest for identification of novel compounds corresponding to potential drug targets. It is critical to understand the strengths and weaknesses of docking algorithms to increase the success rate in practical applications. Here, we systematically investigated the docking successes and failures of two representative docking programs: UCSF DOCK 3.7 and AutoDock Vina. DOCK 3.7 performed better in early enrichment on the Directory of Useful Decoys: Enhanced (DUD-E) data set, although both docking methods were roughly comparable in overall enrichment performance. DOCK 3.7 also showed superior computational efficiency. Intriguingly, the Vina scoring function showed a bias toward compounds with higher molecular weights. Both the tested docking approaches yielded incorrectly predicted ligand binding poses caused by the limitations of torsion sampling. Based on a careful analysis of docking results from six representative cases, we propose the reasons underlying docking failures; furthermore, we provide a few solutions, representing practical guidance for large-scale virtual screening campaigns and future docking algorithm development.
Collapse
Affiliation(s)
- Min Xu
- College
of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
- National
Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
| | - Cheng Shen
- National
Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
- Graduate
School of Peking Union Medical College, Chinese Academy of Medical Sciences, No. 9, Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Jincai Yang
- National
Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
| | - Qing Wang
- National
Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Niu Huang
- National
Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
9
|
Prasetyo WE, Kusumaningsih T, Wibowo FR. Gaining deeper insights into 2,5-disubstituted furan derivatives as potent α-glucosidase inhibitors and discovery of putative targets associated with diabetes diseases using an integrative computational approach. Struct Chem 2022. [DOI: 10.1007/s11224-022-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Virtual screening against Mycobacterium tuberculosis DNA gyrase: Applications and success stories. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Chen T, Li WQ, Liu Z, Jiang W, Liu T, Yang Q, Zhu XL, Yang GF. Discovery of Biphenyl-Sulfonamides as Novel β- N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12039-12047. [PMID: 34587743 DOI: 10.1021/acs.jafc.1c01642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel insecticidal targets are always in demand due to the development of resistance. OfHex1, a β-N-acetyl-d-hexosaminidase identified in Ostrinia furnacalis (Asian corn borer), is involved in insect chitin catabolism and has proven an ideal target for insecticide development. In this study, structure-based virtual screening, structure simplification, and biological evaluation are used to show that compounds with a biphenyl-sulfonamide skeleton have great potential as OfHex1 inhibitors. Specifically, compounds 10k, 10u, and 10v have Ki values of 4.30, 3.72, and 4.56 μM, respectively, and thus, they are more potent than some reported nonglycosyl-based inhibitors such as phlegmacin B1 (Ki = 26 μM), berberine (Ki = 12 μM), 2 (Ki = 11.2 μM), and 3 (Ki = 28.9 μM). Furthermore, inhibitory kinetic assessments reveal that the target compounds are competitive inhibitors with respect substrate, and based on toxicity predictions, most of them have potent drug properties. The obtained results indicate that the biphenyl-sulfonamide skeleton characterized by simple chemical structure, synthetic tractability, potent activity, and low toxicity has potential for further development in pest management targeting OfHex1.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Qin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
12
|
Grahl MVC, Alcará AM, Perin APA, Moro CF, Pinto ÉSM, Feltes BC, Ghilardi IM, Rodrigues FVF, Dorn M, da Costa JC, Norberto de Souza O, Ligabue-Braun R. Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100539. [PMID: 33623816 PMCID: PMC7893290 DOI: 10.1016/j.imu.2021.100539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
In 2020 SARS-CoV-2 reached pandemic status, reaching Brazil in mid-February. As of now, no specific drugs for treating the disease are available. In this work, the possibility of interaction between SARS-CoV-2 viral proteins (open and closed spike protein, isolate spike protein RBD, NSP 10, NSP 16, main protease, and RdRp polymerase) and multiple molecules is addressed through the repositioning of drugs available for the treatment of other diseases that are approved by the FDA and covered by SUS, the Brazilian Public Health System. Three different docking software were used, followed by a unification of the results by independent evaluation. Afterwards, the chemical interactions of the compounds with the targets were inspected via molecular dynamics and analyzed. The results point to a potential effectiveness of Penciclovir, Ribavirin, and Zanamivir, from a set of 48 potential candidates. They may also be multi-target drugs, showing high affinity with more than one viral protein. Further in vitro and in vivo validation is required to assess the suitability of repositioning the proposed drugs for COVID-19.
Collapse
Affiliation(s)
- Matheus V C Grahl
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Allan M Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil
| | - Carlo F Moro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Éderson S M Pinto
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
| | - Bruno C Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
- Laboratory of Immunobiology and Immunogenetics, Institute of Biosciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Isadora M Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
| | - Jaderson C da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Norberto de Souza
- School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences and Graduate Program in Biosciences (PPGBio), Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
13
|
Heidarpoor Saremi L, Ebrahimi A, Lagzian M. Identification of new potential cyclooxygenase-2 inhibitors: insight from high throughput virtual screening of 18 million compounds combined with molecular dynamic simulation and quantum mechanics. J Biomol Struct Dyn 2020; 39:1717-1734. [PMID: 32122267 DOI: 10.1080/07391102.2020.1737574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase isoenzymes (COX-1 and COX-2) have a critical role in inflammation, fever, and pain. In contrary to COX-1, COX-2 is specifically expressed in inflamed tissues. Because of the subtle difference between both enzyme active sites, targeting COX-2 represents an efficient strategy for the development of novel inhibitors against inflammation with fewer side effects. In order to identify potential inhibitors of COX-2, more than 18,000,000 small molecules were retrieved from the ZINC database and virtually screened against it with a gradual increase in the precision through combined multistep docking. The results were sorted according to the rank-by-rank, induced-fit docking, and MM-GBSA evaluation. Subsequently from the final hit list, two top hits along with an approved selective inhibitor (celecoxib) were further investigated by the molecular dynamics (MD) simulations. The results were indicated that ZINC16934653 and ZINC40484701 demonstrate the highest affinity for the COX-2 binding pocket. Both ligands were bound to the important active-site residues, which are necessary for the correct orientation of inhibitors inside the binding cavity. Their binding free energies were comparable to celecoxib. 100 ns MD simulation is revealed that ZINC40484701 is more preferred in comparison with ZINC16934653 and celecoxib. In addition, non-covalent interactions between the compounds and key residues located in 6 Å distance from the COX-2 binding site show similar patterns of bonding by the reduced density gradient and the independent gradient model. Therefore, ZINC40484701 can be a potential candidate for further in vitro and in vivo analysis after lead-optimization efforts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leily Heidarpoor Saremi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|