1
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
2
|
Xu M, Song D, Xie X, Qin Y, Huang J, Wang C, Chen J, Su Y, Xu J, Zhao J, Liu Q. CGK733 alleviates ovariectomy-induced bone loss through blocking RANKL-mediated Ca 2+ oscillations and NF-κB/MAPK signaling pathways. iScience 2023; 26:107760. [PMID: 37720109 PMCID: PMC10504545 DOI: 10.1016/j.isci.2023.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
Osteoporosis is a prevalent systemic metabolic disease in modern society, in which patients often suffer from bone loss due to over-activation of osteoclasts. Currently, amelioration of bone loss through modulation of osteoclast activity is a major therapeutic strategy. Ataxia telangiectasia mutated (ATM) inhibitor CGK733 (CG) was reported to have a sensitizing impact in treating malignancies. However, its effect on osteoporosis remains unclear. In this study, we investigated the effects of CG on osteoclast differentiation and function, as well as the therapeutic effects of CG on osteoporosis. Our study found that CG inhibits osteoclast differentiation and function. We further found that CG inhibits the activation of NFATc1 and ultimately osteoclast formation by inhibiting RANKL-mediated Ca2+ oscillation and the NF-κB/MAPK signaling pathway. Next, we constructed an ovariectomized mouse model and demonstrated that CG improved bone loss in ovariectomized mice. Therefore, CG may be a potential drug for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Minglian Xu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoxiao Xie
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yiwu Qin
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Junchun Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Hult EM, Gurczynski SJ, Moore BB. M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2021; 321:L518-L532. [PMID: 34231378 DOI: 10.1152/ajplung.00107.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.
Collapse
Affiliation(s)
- Elissa M Hult
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Navigating the diverse immune landscapes of psoriatic arthritis. Semin Immunopathol 2021; 43:279-290. [PMID: 33721040 DOI: 10.1007/s00281-021-00848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
The goal of remission in psoriatic arthritis (PsA) has remained elusive despite the influx of a range of new therapies over the last 20 years. In contrast, therapeutic responses to agents that inhibit IL-23 or IL-17 have demonstrated impressive efficacy in psoriasis. In part, the divergent responses in these two disorders are likely related to the heterogeneity of tissue involvement in PsA and the interplay of multiple different cell populations and molecular pathways. In this narrative review, we will examine the plasticity of the immune response in PsA from the perspective of the Th17 cell and monocyte and discuss recent findings regarding the importance of CD8+ T resident cells in disease pathogenesis. We will then examine the effects of cytokines on epithelial cell and stromal populations and finally discuss new data regarding immune cell and tissue resident cell cross-talk in entheses and bone. Lastly, the potential therapeutic targets that have emerged from these investigations will be discussed.
Collapse
|
5
|
Phromnoi K, Suttajit M, Saenjum C, Limtrakul (Dejkriengkraikul) P. Inhibitory Effect of a Rosmarinic Acid-Enriched Fraction Prepared from Nga-Mon ( Perilla frutescens) Seed Meal on Osteoclastogenesis through the RANK Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10020307. [PMID: 33671207 PMCID: PMC7923133 DOI: 10.3390/antiox10020307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to determine antioxidant and anti-inflammatory activities relating to the antiosteoporosis effects of various perilla seed meal (PSM) fractions. The remaining waste of perilla seed obtained from cold oil compression was extracted with 70% ethanol and sequentially fractionated according to solvent polarity with hexane, dichloromethane, ethyl acetate, and water. The results indicated that the seed-meal ethyl acetate fraction (SMEF) exhibited the highest antioxidant and anti-inflammatory activities, and rosmarinic acid (RA) content. The signaling pathways induced by the receptor activator of the nuclear factor kappa B (NF-κB) ligand (RANKL) that trigger reactive oxygen species (ROS) and several transcription factors, leading to the induction of osteoclastogenesis, were also investigated. The SMEF clearly showed attenuated RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and TRAP activity. A Western blot analysis showed that the SMEF significantly downregulated RANKL-induced NF-κB, AP-1 activation, and the nuclear factor of activated T-cell 1 (NFATc1) expression. SMEF also suppressed RANKL-induced osteoclast-specific marker gene-like MMP-9 using zymography. Furthermore, the SMEF showed inhibition of RANKL-induced ROS production in RAW 264.7 cells. The results suggest that the SMEF, which contained high quantities of RA, could be developed as a natural active pharmaceutical ingredient for osteoclastogenic protection and health promotion.
Collapse
Affiliation(s)
- Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (M.S.)
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (M.S.)
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Excellence on Biodiversity-Based Economics and Society (B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.S.); (P.L.D.); Tel.: +66-89-950-4227 (C.S.); +66-89-952-8111 (P.L.D.)
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.S.); (P.L.D.); Tel.: +66-89-950-4227 (C.S.); +66-89-952-8111 (P.L.D.)
| |
Collapse
|
6
|
Bergamin LS, Penolazzi L, Lambertini E, Falzoni S, Sarti AC, Molle CM, Gendron FP, De Bonis P, Di Virgilio F, Piva R. Expression and function of the P2X7 receptor in human osteoblasts: The role of NFATc1 transcription factor. J Cell Physiol 2020; 236:641-652. [PMID: 32583512 DOI: 10.1002/jcp.29891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
Bone mineralization is an orchestrated process by which mineral crystals are deposited by osteoblasts; however, the detailed mechanisms remain to be elucidated. The presence of P2X7 receptor (P2X7R) in immature and mature bone cells is well established, but contrasting evidence on its role in osteogenic differentiation and deposition of calcified bone matrix remains. To clarify these controversies in the present study, we investigated P2X7R participation in bone maturation. We demonstrated that the P2X7R is expressed and functional in human primary osteoblasts, and identified in the P2RX7 promoter several binding sites for transcription factors involved in bone mineralization. Of particular interest was the finding that P2X7R expression is enhanced by nuclear factor of activated T cells cytoplasmic 1 (NFATc1) overexpression, and accordingly, NFATc1 is recruited at the P2RX7 gene promoter in SaOS2 osteoblastic-like cells. In conclusion, our data provide further insights into the regulation of P2X7R expression and support the development of drugs targeting this receptor for the therapy of bone diseases.
Collapse
Affiliation(s)
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Caroline M Molle
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | | | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|