1
|
Wei Y, Li Z, Yu T, Chen Y, Yang Q, Wen K, Liao J, Li L. Ultrasound-activated piezoelectric biomaterials for cartilage regeneration. ULTRASONICS SONOCHEMISTRY 2025; 117:107353. [PMID: 40250302 DOI: 10.1016/j.ultsonch.2025.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Due to the low density of chondrocytes and limited ability to repair damaged extracellular matrix (ECM) in cartilage, many patients with congenital or acquired craniofacial trauma require filler graft materials to support facial structure, restore function, improve self-confidence, and regain socialization. Ultrasound has the capacity to stimulate piezoelectric materials, converting mechanical energy into electrical signals that can regulate the metabolism, proliferation, and differentiation of chondrocytes. This unique property has sparked growing interest in using piezoelectric biomaterials in regenerative medicine. In this review, we first explain the principle behind ultrasound-activated piezoelectric materials and how they generate piezopotential. We then review studies demonstrating how this bioelectricity promotes chondrocyte regeneration, stimulates the secretion of key extracellular components and supports cartilage regeneration by activating relevant signaling pathways. Next, we discuss the properties, synthesis, and modification strategies of various piezoelectric biomaterials. We further discuss recent progresses in the development of ultrasound-activated piezoelectric biomaterials specifically designed for cartilage regeneration. Lastly, we discuss future research challenges facing this technology, ultrasound-activated piezoelectric materials for cartilage regeneration engineering. While the technology holds great promise, certain obstacles remain, including issues related to material stability, precise control over ultrasound parameters, and the integration of these systems into clinical settings. The combination of ultrasound-activated piezoelectric technology with other emerging fields, such as Artificial Intelligence (AI) and cartilage organoid chips, may open new frontiers in regenerative medicine. We hope this review encourages further exploration of ultrasound-activated strategies for piezoelectric materials and their future applications in regenerative medicines.
Collapse
Affiliation(s)
- Yangchen Wei
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Zhengyang Li
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Tianjing Yu
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yan Chen
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junlin Liao
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Petrella F, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A. Mesenchymal Stromal Cell Therapy for Thoracic Surgeons: An Update. J Pers Med 2023; 13:1632. [PMID: 38138859 PMCID: PMC10744666 DOI: 10.3390/jpm13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells are undifferentiated cells presenting extensive self-renewal features and the ability to differentiate "in vitro" and "in vivo" into a range of lineage cells, like chondrogenic, osteogenic and adipogenic lineages when cultured in specific inducing media. Two major domains of clinical applications of stem cells in thoracic surgery have been investigated: regenerative medicine, which is a section of translational research in tissue engineering focusing on the replacement, renewal or regeneration of cells, tissues and organs to re-establish damaged physiologic functions; drug loading and delivery, representing a new branch proposing stem cells as carriers to provide selected districts with anti-cancer agents for targeted treatments.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| | | | | | | | | | | |
Collapse
|