1
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
2
|
Du S, Yang Z, Qin Y, Wang S, Duan H, Yang X. Computational investigation of the molecular conformation-dependent binding mode of (E)-β-farnesene analogs with a heterocycle to aphid odorant-binding proteins. J Mol Model 2018; 24:70. [DOI: 10.1007/s00894-018-3612-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/31/2018] [Indexed: 10/17/2022]
|
3
|
Experimental evaluation of the generalized vibrational theory of G protein-coupled receptor activation. Proc Natl Acad Sci U S A 2017; 114:5595-5600. [PMID: 28500275 DOI: 10.1073/pnas.1618422114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, an alternative theory concerning the method by which olfactory proteins are activated has garnered attention. This theory proposes that the activation of olfactory G protein-coupled receptors occurs by an inelastic electron tunneling mechanism that is mediated through the presence of an agonist with an appropriate vibrational state to accept the inelastic portion of the tunneling electron's energy. In a recent series of papers, some suggestive theoretical evidence has been offered that this theory may be applied to nonolfactory G protein-coupled receptors (GPCRs), including those associated with the central nervous system (CNS). [Chee HK, June OS (2013) Genomics Inform 11(4):282-288; Chee HK, et al. (2015) FEBS Lett 589(4):548-552; Oh SJ (2012) Genomics Inform 10(2):128-132]. Herein, we test the viability of this idea, both by receptor affinity and receptor activation measured by calcium flux. This test was performed using a pair of well-characterized agonists for members of the 5-HT2 class of serotonin receptors, 2,5-dimethoxy-4-iodoamphetamine (DOI) and N,N-dimethyllysergamide (DAM-57), and their respective deuterated isotopologues. No evidence was found that selective deuteration affected either the binding affinity or the activation by the selected ligands for the examined members of the 5-HT2 receptor class.
Collapse
|
4
|
Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, Liu X, Zhang J, Lancet D, Shepherd G, Crasto C. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw132. [PMID: 27694208 PMCID: PMC5045865 DOI: 10.1093/database/baw132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
We present here an exploration of the evolution of three well-established, web-based resources dedicated to the dissemination of information related to olfactory receptors (ORs) and their functional ligands, odorants. These resources are: the Olfactory Receptor Database (ORDB), the Human Olfactory Data Explorer (HORDE) and ODORactor. ORDB is a repository of genomic and proteomic information related to ORs and other chemosensory receptors, such as taste and pheromone receptors. Three companion databases closely integrated with ORDB are OdorDB, ORModelDB and OdorMapDB; these resources are part of the SenseLab suite of databases (http://senselab.med.yale.edu). HORDE (http://genome.weizmann.ac.il/horde/) is a semi-automatically populated database of the OR repertoires of human and several mammals. ODORactor (http://mdl.shsmu.edu.cn/ODORactor/) provides information related to OR-odorant interactions from the perspective of the odorant. All three resources are connected to each other via web-links. Database URL: http://senselab.med.yale.edu; http://genome.weizmann.ac.il/horde/; http://mdl.shsmu.edu.cn/ODORactor/
Collapse
Affiliation(s)
| | - Rixin Wang
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
6
|
Barwich AS. What is so special about smell? Olfaction as a model system in neurobiology. Postgrad Med J 2015; 92:27-33. [PMID: 26534994 DOI: 10.1136/postgradmedj-2015-133249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/05/2015] [Indexed: 11/04/2022]
Abstract
Neurobiology studies mechanisms of cell signalling. A key question is how cells recognise specific signals. In this context, olfaction has become an important experimental system over the past 25 years. The olfactory system responds to an array of structurally diverse stimuli. The discovery of the olfactory receptors (ORs), recognising these stimuli, established the olfactory pathway as part of a greater group of signalling mechanisms mediated by G-protein-coupled receptors (GPCRs). GPCRs are the largest protein family in the mammalian genome and involved in numerous fundamental physiological processes. The OR family exhibits two characteristics that make them an excellent model system to understand GPCRs: its size and the structural diversity of its members. Research on the OR binding site investigates what amino acid sequences determine the receptor-binding capacity. This promises a better understanding of how the basic genetic makeup of GPCRs relates to their diversification in ligand-binding capacities.
Collapse
|
7
|
Barwich AS. Bending Molecules or Bending the Rules? The Application of Theoretical Models in Fragrance Chemistry. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/posc_a_00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Don CG, Riniker S. Scents and sense:In silicoperspectives on olfactory receptors. J Comput Chem 2014; 35:2279-87. [DOI: 10.1002/jcc.23757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Charleen G. Don
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich; 8093 Zurich Switzerland
| | - Sereina Riniker
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|
9
|
Lai PC, Guida B, Shi J, Crasto CJ. Preferential binding of an odor within olfactory receptors: a precursor to receptor activation. Chem Senses 2014; 39:107-23. [PMID: 24398973 PMCID: PMC3894857 DOI: 10.1093/chemse/bjt060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using computational methods, which allow mechanistic insights at a molecular level, we explored the olfactory receptor (OR)-odor interactions for 2 mouse ORs, S79 and S86. Both ORs have been previously experimentally, functionally characterized. The odors used were mostly carboxylic acids, which differed in chain length, substituents on the primary carbon atom-chain and degree of unsaturation. These odors elicited varied activation responses from both ORs. Our studies revealed that both receptors have 2 distinct binding sites. Preferential binding in 1 of the 2 sites is correlated with OR activation. The activating odorants: nonanedioic acid, heptanoic acid, and octanoic acid for OR S79 and nonanoic acid for OR S86 preferentially bind in the region bound by transmembranes (TMs [helical domains]) III, IV, V, and VI. The non excitatory odorants heptanol for S79 and heptanoic acid for S86 showed a greater likelihood of binding in the region bound by TMs I, II, III, and VII. Nanosecond-scale molecular dynamics simulations of the physiologically relevant conditions of docked OR-odorant complexes enabled us to quantitatively assess the roles of individual OR amino acids in odor binding. Amino acid-odorant contact maps and distance determinations over the course of the simulations lend support to our conclusions.
Collapse
Affiliation(s)
- Peter C Lai
- Department of Genetics, Division of Research, University of Alabama at Birmingham, 720 20th Street S., Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
10
|
Oliferenko PV, Oliferenko AA, Poda GI, Osolodkin DI, Pillai GG, Bernier UR, Tsikolia M, Agramonte NM, Clark GG, Linthicum KJ, Katritzky AR. Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay. PLoS One 2013; 8:e64547. [PMID: 24039693 PMCID: PMC3765160 DOI: 10.1371/journal.pone.0064547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort.
Collapse
Affiliation(s)
- Polina V. Oliferenko
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Alexander A. Oliferenko
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gennadiy I. Poda
- Medicinal Chemistry Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Girinath G. Pillai
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | - Alan R. Katritzky
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
|
12
|
Gromiha MM, Ou YY. Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 2013; 15:155-68. [DOI: 10.1093/bib/bbt015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Abstract
Considerable evidence supports the idea that odorant recognition depends on specific sequence variations in olfactory receptor (OR) proteins. Much of this emerges from in vitro screens in heterogenous expression systems. However, the ultimate proof should arise from measurements of odorant thresholds in human individuals harboring different OR genetic variants, a research vein that has so far been only scantly explored. The study of McRae et al., published in this issue of Chemical Senses, shows how the recognition of a grassy odorant depends on specific OR interindividual sequence changes. It provides a clear relevant example for the impact of genetics on olfaction and is an excellent portrayal of the power of human genomics to decipher olfactory perception.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|