1
|
Wang Z, Yuan H, Yan J, Liu J. Identification, characterization, and design of plant genome sequences using deep learning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17190. [PMID: 39666835 DOI: 10.1111/tpj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Alshammari A. Ensemble recurrent neural network with whale optimization algorithm-based DNA sequence classification for medical applications. Soft comput 2023:1-14. [PMID: 37362270 PMCID: PMC10231859 DOI: 10.1007/s00500-023-08435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
The modern data-driven era has facilitated the gathering of large quantities of biomedical and clinical data. The deoxyribonucleic acid gene expression datasets have become a vital focus for the research community because of their capability to detect pathogens via 'biomarkers' or particular modifications in the gene sequence which portray a specific pathogen. Metaheuristic-related feature selection (FS) efficiently filters out only the pertinent genes out of large feature sets to lessen the data storage and computation requirements. This paper embraces the whale optimization algorithm for the FS issue in HD microarray data for the effectual propagation of candidate solutions to reach global optima over sufficient iterations. The chosen data are classified by employing an ensemble recurrent network (ERNN) that retains the amalgamation of long short-term memory, bidirectional long short-term memory, and gated recurrent units. Analysis of this proposed ERNN methodology would be performed by correlating with diverse advanced methodologies, and thus, the ERNN attains 99.59% precision and 99.59% accuracy.
Collapse
Affiliation(s)
- Abdulaziz Alshammari
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zulfiqar H, Guo Z, Grace-Mercure BK, Zhang ZY, Gao H, Lin H, Wu Y. Empirical comparison and recent advances of computational prediction of hormone binding proteins using machine learning methods. Comput Struct Biotechnol J 2023; 21:2253-2261. [PMID: 37035551 PMCID: PMC10073991 DOI: 10.1016/j.csbj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Hormone binding proteins (HBPs) belong to the group of soluble carrier proteins. These proteins selectively and non-covalently interact with hormones and promote growth hormone signaling in human and other animals. The HBPs are useful in many medical and commercial fields. Thus, the identification of HBPs is very important because it can help to discover more details about hormone binding proteins. Meanwhile, the experimental methods are time-consuming and expensive for hormone binding proteins recognition. Computational prediction methods have played significant roles in the correct recognition of hormone binding proteins with the use of sequence information and ML algorithms. In this review, we compared and assessed the implementation of ML-based tools in recognition of HBPs in a unique way. We hope that this study will give enough awareness and knowledge for research on HBPs.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Gao
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
4
|
Zulfiqar H, Huang QL, Lv H, Sun ZJ, Dao FY, Lin H. Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique. Int J Mol Sci 2022; 23:1251. [PMID: 35163174 PMCID: PMC8836036 DOI: 10.3390/ijms23031251] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer composition were used to encode the DNA sequences of Geobacter pickeringii. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in Geobacter pickeringii. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.Z.); (Q.-L.H.); (H.L.); (Z.-J.S.); (F.-Y.D.)
| |
Collapse
|
5
|
Lin C, Wang L, Shi L. AAPred-CNN: accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides. Methods 2022; 204:442-448. [PMID: 35031486 DOI: 10.1016/j.ymeth.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, deep learning techniques have been developed for various bioactive peptide prediction tasks. However, there are only conventional machine learning-based methods for the prediction of anti-angiogenic peptides (AAP), which play an important role in cancer treatment. The main reason why no deep learning method has been involved in this field is that there are too few experimentally validated AAPs to support the training of deep models but researchers have believed that deep learning seriously depends on the amounts of labeled data. In this paper, as a tentative work, we try to predict AAP by constructing different classical deep learning models and propose the first deep convolution neural network-based predictor (AAPred-CNN) for AAP. Contrary to intuition, the experimental results show that deep learning models can achieve superior or comparable performance to the state-of-the-art model, although they are given a few labeled sequences to train. We also decipher the influence of hyper-parameters and training samples on the performance of deep learning models to help understand how the model work. Furthermore, we also visualize the learned embeddings by dimension reduction to increase the model interpretability and reveal the residue propensity of AAP through the statistics of convolutional features for different residues. In summary, this work demonstrates the powerful representation ability of AAPred-CNNfor AAP prediction, further improving the prediction accuracy of AAP.
Collapse
Affiliation(s)
- Changhang Lin
- School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuzhou, China
| | - Lei Wang
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|