1
|
Shen D, Wu C, Chen M, Zhou Z, Li H, Tong X, Chen Z, Guo Y. Prognosis prediction and drug guidance of ovarian serous cystadenocarcinoma through mitochondria gene-based model. Cancer Genet 2025; 292-293:1-13. [PMID: 39754905 DOI: 10.1016/j.cancergen.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Mitochondrial dysregulation contributes to the chemoresistance of multiple cancer types. Yet, the functions of mitochondrial dysregulation in Ovarian serous cystadenocarcinoma (OSC) remain largely unknown. AIM We sought to investigate the function of mitochondrial dysregulation in OSC from the bioinformatics perspective. We aimed to establish a model for prognosis prediction and chemosensitivity evaluation of the OSC patients by targeting mitochondrial dysregulation. METHODS Differentially expressed genes (DEGs) were screened from the Cancer Genome Atlas (TCGA)-OV dataset and the mitochondrial-related DEGs were identified from the Human MitoCarta 3.0 database. Prognosis-related mitochondria-related genes (MRGs) were screened to establish the MRGs-based risk score model for prognosis prediction. To validate the risk score model, the risk score model was then evaluated by IHC staining intensity and survival curves from clinical specimens of OSC patients. Migration and proliferation assays were performed to elucidate the role of carcinogenic gene ACSS3 in serous ovarian cancer cell lines. RESULTS Using consensus clustering algorithm, we identified 341 MRGs and two subtypes of OSC patients. Moreover, we established a novel prognostic risk score model by combining the transcription level, intensity and extent scores of MRGs for prognosis prediction purpose. The model was established using 7 MRGs (ACOT13, ACSS3, COA6, HINT2, MRPL14, NDUFC2, and NDUFV2) significantly correlated to the prognosis of OSC. Importantly, by performing the drug sensitivity analysis, we found that the OSC patients in the low-risk group were more sensitive to cisplatin, paclitaxel and docetaxel than those in the high-risk group, while the latter ones were more sensitive to VEGFR inhibitor Axitinib and BRAF inhibitors Vemurafenib and SB590885. In addition, patients in the low-risk group were predicted to have better response in anti-PD-1 immunotherapy than those in the high-risk group. The risk score model was then validated by survival curves of high-risk and low-risk groups determined by IHC staining scores of OSC clinical samples. The carcinogenic effect of ACSS3 in OSC was confirmed through the knockdown of ACSS3 in SKOV3 and HO-8910 cells. CONCLUSION To summarize, we established a novel 7 MRGs - based risk score model that could be utilized for prognosis prediction and chemosensitivity assessment in OSC patients.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Chenghao Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Meiyi Chen
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Zixuan Zhou
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai, 200433, PR China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Zhenghu Chen
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, PR China.
| | - Yi Guo
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
2
|
Lee BM, Park YJ, Pang WK, Ryu DY, Rahman MS, Lee DY, Pang MG. Boar fertility is controlled through systematic changes of mitochondrial protein expression during sperm capacitation. Int J Biol Macromol 2023; 248:125955. [PMID: 37494999 DOI: 10.1016/j.ijbiomac.2023.125955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Vigorous activation of mitochondria in spermatozoa during capacitation induces the biological and morphological changes of spermatozoa to acquire fertilizing ability. To in-depth understand the dynamic roles of mitochondrial and male fertility, this study was to identify how the mitochondrial proteins are changed during sperm capacitation and regulate male fertility using boar spermatozoa. The mitochondrial proteins were differentially changed during sperm capacitation according to fertility status, i.e., superior litter size (SL) and normal litter size (NL). Following sperm capacitation, ubiquitin-cytochrome c reductase core protein (UQCRC1) and ATP synthase F1 (ATP5F1) increased in NL, while cytochrome c oxidase subunit 5B (COX5B), and cytochrome c1 (CYC1) proteins decreased. In contrast, only and ubiquinone oxidoreductase core subunit 8 (NDUFS8) protein was increased in SL following capacitation. The protein expression difference value of CYC1, COX5B, and NDUFS8 following sperm capacitation was lower in NL than SL boars. Based on these complicated changes during sperm capacitation, the accuracy for predicting male fertility of NDUFS8 was increased to 87 %. Overall, considering the systematic orchestration of mitochondrial protein expression according to sperm capacitation status, it will be possible to better understand male fertility.
Collapse
Affiliation(s)
- Byeong-Mu Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Dae-Young Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Sharifi S, Mostafavi PG, Tarasi R, Moradi AM, Givianrad MH, Farimani MM, Ebrahimi SN, Hamburger M, Niknejad H. Purified compounds from marine organism sea pen induce apoptosis in human breast cancer cell MDA-MB-231 and cervical cancer cell Hela. Eur J Pharmacol 2020; 877:173075. [PMID: 32222494 DOI: 10.1016/j.ejphar.2020.173075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Marine organisms are an important source of chemical compounds which are appropriate for use as therapeutic agents. Among them, Sea pens produce valuable chemical compounds being used as anti-cancer drugs. The aim of this study was to investigate anti-cancer property of extracted and purified compounds from marine organism Sea pen and evaluate their effects on inducing of apoptosis. The extracts were prepared from dried colony of Virgularia gustaviana. The compounds (3β)-Cholest,5en,3ol (cholesterol) (15 mg), Hexadecanoic acid (2.5 mg) and 2-Hexadecanol (10.7 mg) were identified by GC-MS and NMR. The cytotoxic effects of the compounds were evaluated on Hela and MDA-Mb-231 human cancer cell lines with MTT assay. Immunocytochemistry and Western Blot analyses were used to evaluate the expression of apoptosis related markers Caspase 3, Caspase 8, Bax and BCL2 in cancer cells after treating with three compounds. The purified compounds reduced viability of human breast cancer cell line MDA-MB-231 and human cervical cancer cell line Hela concentration-dependently. 2-Hexadecanol reduced significantly the viability of both cancer cell lines in comparison to the other purified compounds. Treatment of cancer cells with the three purified compounds increased the expression of caspase-3, caspase-8 and Bax proteins and decreased the relative Bcl-2/Bax ratio, demonstrating induction of apoptosis as possible mechanism of action. According to the results, three purified compounds inhibit the growth of cancer cells by inducing of apoptosis pathway; an effect which needs to be further investigated in the future studies.
Collapse
Affiliation(s)
- Sharareh Sharifi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pargol Ghavam Mostafavi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mashinchian Moradi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Branco CS, Duong A, Machado AK, Wu A, Scola G, Andreazza AC, Salvador M. Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Mol Biol Rep 2019; 46:6013-6025. [PMID: 31452047 DOI: 10.1007/s11033-019-05037-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Brain disorders (BD) including neuropsychiatric and neurodegenerative diseases, are often associated with impairments in mitochondrial function and oxidative damage that can lead to neuronal injury. The mitochondrial complex I enzyme is one of the main sites of ROS generation and is implicated in many BD pathophysiologies. Despite advances in therapeutics for BD management, conventional pharmacotherapy still cannot efficiently control neuronal redox imbalance and mitochondrial dysfunction. Araucaria angustifolia is one of the main pine species in South America and presents a notable therapeutic history in folk medicine. A. angustifolia extract (AAE), obtained from the natural waste named bracts, is rich in flavonoids; molecules able to regulate cell redox metabolism. We examined the effects of AAE on rotenone-induced mitochondrial complex I dysfunction in human dopaminergic SH-SY5Y cells. AAE restored complex I assembly and activity mainly through overexpression of NDUFS7 protein and NDUFV2 gene levels. These findings were accompanied by a reduction in the generation of neuronal reactive oxygen species and lipid peroxidation. Our data demonstrates, for the first time, that AAE exerts in vitro neuroprotective effects, thus making it an interesting source for future drug development in BD-associated mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, 95070 560, Brazil.
| | - Angela Duong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Abbie Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gustavo Scola
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health - CAMH, Toronto, ON, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health - CAMH, Toronto, ON, Canada
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, 95070 560, Brazil
| |
Collapse
|