1
|
Zhang R, Ai J, Wang J, Sun C, Lu H, He A, Li M, Liao Y, Lei J, Zhou F, Wu L, Liao W. NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN. J Transl Med 2022; 20:325. [PMID: 35864529 PMCID: PMC9301831 DOI: 10.1186/s12967-022-03519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NCAPG, non-SMC subunit in the concentrate I complex, might promote the proliferation of hepatocellular carcinoma (HCC), but the mechanism is unclear. The aim of this study was to explore how NCAPG affects PTEN to influence the proliferation of HCC. METHODS Western blotting, qRT-PCR and immunohistochemistry were used to detect NCAPG expression in HCC tissues. The effect of NCAPG on the proliferation of HCC cell lines was evaluated using an EdU incorporation assay, a Cell Counting Kit-8 assay and Fluorescence in situ hybridization (FISH). BALB/c-nu/nu mice were used for the in vivo proliferation experiment. Transcriptome sequencing was used to determine the relationship between NCAPG and PTEN. Immunocoprecipitation-mass spectrometry (IP-MS), proteomic sequencing and Co-immunoprecipitation (CO-IP) were used to identify and examine the interaction between the NCAPG and CKII proteins. RESULTS We confirmed that NCAPG was abnormally overexpressed in HCC and promoted the proliferation of HCC cells. Transcriptome sequencing revealed that NCAPG inhibited the transcription of PTEN and promoted the activation of the PI3K-AKT pathway. We found a close association between NCAPG and CKII through proteomic sequencing; their interaction was confirmed by Co-IP. There was a positive correlation between NCAPG and CKII that promoted the phosphorylation of PTEN and thus inhibited its transcription and functions. We also proved that CKII was the key factor in the induction of proliferation by NCAPG. CONCLUSION We revealed the mechanism by which NCAPG regulates the proliferation of HCC: NCAPG inhibits PTEN through its interaction with CKII, and then activates the PI3K-AKT pathway to promote the proliferation of HCC.
Collapse
Affiliation(s)
- Rongguiyi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jiyuan Ai
- Department of General Surgery, The Third Hospital of Nanchang City, No. 2, Xiangshan South Road, Nanchang, 330006, China
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Chi Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Min Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Yuting Liao
- Department of Nursing, Gannan Medical College, No. 1, Medical Road, Ganzhou, 341000, China
| | - Jun Lei
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
2
|
Lan X, Han J, Wang B, Sun M. Integrated analysis of transcriptome profiling of lncRNAs and mRNAs in livers of type 2 diabetes mellitus. Physiol Genomics 2022; 54:86-97. [PMID: 35073196 DOI: 10.1152/physiolgenomics.00105.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the progression of almost all human diseases, but the participation of lncRNAs in type 2 diabetes mellitus (T2DM) has not been fully elucidated. The present study aimed to systematically compare the transcriptome profiling of lncRNAs and mRNAs in livers between T2DM patients and controls, to identify key genes associated with T2DM pathogenesis, and to predict the underlying molecular mechanisms. As a result, a total of 1,512 differentially expressed (DE) lncRNAs and 1,923 DE mRNAs were identified through microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that multiple metabolic processes were dysregulated such as small molecule, organic acid, lipid and branched chain amino acid metabolism. Protein-protein interaction network was constructed and 10 hub mRNAs were identified, including EHHADH, ATM, ACOX1, PIK3R1, EGFR, UQCRFS1, HMGCL, UQCRC2, NDUFS3 and F2. RT-qPCR was conducted to verify the validity of microarray results. Then, coding-noncoding co-expression network and competing endogenous RNA (ceRNA) network were analyzed to predict the lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory patterns. Subsequently, 10 key intermediating miRNAs in ceRNA networks with a node degree > 80 were identified, including hsa-miR-5692a, hsa-miR-12136, hsa-miR-5680, hsa-miR-1305, hsa-miR-6833-5p, hsa-miR-7159-5p, hsa-miR-548as-3p, hsa-miR-6873-3p, hsa-miR-1290 and hsa-miR-4768-5p. In conclusion, the present study evaluated the transcriptome profiling of lncRNAs and mRNAs in livers from T2DM patients, with a value for understanding the molecular mechanism of disease pathogenesis and identifying effective biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, grid.43169.39Xi'an Jiaotong University, Xi'an, China
| | - Jing Han
- Talent Highland and Center for Gut Microbiome Research of Med-X Institute, grid.452438.cFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binxian Wang
- Department of Microbiology and Immunology, School of Basic Medical Science, grid.43169.39Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Sun
- Department of Endocrinology, grid.452672.0Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Xing Y, Lin Y, Zhang Y, Hu J, Liu J, Tian Y, Zhao J, Chen W, Han B. Novel cytoplasmic lncRNA IKBKBAS promotes lung adenocarcinoma metastasis by upregulating IKKβ and consequential activation of NF-κB signaling pathway. Cell Death Dis 2021; 12:1004. [PMID: 34702815 PMCID: PMC8548314 DOI: 10.1038/s41419-021-04304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
NF-κB signaling pathway is a critical link between inflammation and cancer. Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in dysregulation of NF-κB. Herein, we reported a novel lncRNA IKBKBAS that activated NF-κB in lung adenocarcinoma (LUAD) by upregulating IKKβ, a key member of NF-κB signaling pathway, thereby promoting the metastasis of LUAD both in vitro and in vivo. The upregulated IKBKBAS functioned as a competing endogenous RNA (ceRNA) via competing with IKKβ mRNA for binding miR-4741, consequently leading to upregulation and activation of IKKβ, and ultimately activation of NF-κB. The abnormally elevated IKBKBAS in LUAD was mainly resulted from the extremely decrease of miR-512-5p that targeting IKBKBAS. Furthermore, we identified a positive feedback loop between NF-κB and IKBKBAS, in which NF-κB activation induced by overexpression of IKBKBAS could promote the transcription of IKBKBAS by binding the κB sites within IKBKBAS promoter. Our studies revealed that IKBKBAS was involved in the activation of NF-κB signaling by upregulating the expression of IKKβ, which made it serve as a potential novel target for therapies to LUAD.
Collapse
Affiliation(s)
- Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yani Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Junmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanyuan Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jian Zhao
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
4
|
Mo F, Luo Y, Fan D, Zeng H, Zhao Y, Luo M, Liu X, Ma X. Integrated Analysis of mRNA-seq and miRNA-seq to Identify c-MYC, YAP1 and miR-3960 as Major Players in the Anticancer Effects of Caffeic Acid Phenethyl Ester in Human Small Cell Lung Cancer Cell Line. Curr Gene Ther 2021; 20:15-24. [PMID: 32445454 DOI: 10.2174/1566523220666200523165159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Caffeic Acid Phenethyl Ester (CAPE), an active extract of propolis, has recently been reported to have broad applications in various cancers. However, the effects of CAPE on Small Cell Lung Cancer (SCLC) are largely unknown. Therefore, the aim of this study was to determine the anti-proliferative effect of CAPE and explore the underlying molecular mechanisms in SCLC cells using high-throughput sequencing and bioinformatics analysis. METHODS Small-cell lung cancer H446 cells were treated with CAPE, and cell proliferation and apoptosis were then assessed. Additionally, the regulation mediated by miR-3960 after CAPE treatment was explored and the altered signaling pathways were predicted in a bioinformatics analysis. RESULTS CAPE significantly inhibited cell proliferation and induced apoptosis. CAPE decreased the expression of Yes-Associated Protein 1 (YAP1) and cellular myelocytomatosis oncogene (c-MYC) protein. Moreover, the upregulation of miR-3960 by CAPE contributed to CAPE-induced apoptosis. The knockdown of miR-3960 decreased the CAPE-induced apoptosis. CONCLUSION We demonstrated the anti-cancer effect of CAPE in human SCLC cells and studied the mechanism by acquiring a comprehensive transcriptome profile of CAPE-treated cells.
Collapse
Affiliation(s)
- Fei Mo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya Luo
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Dian Fan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobei Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Kucuksayan E, Bozkurt F, Yilmaz MT, Sircan-Kucuksayan A, Hanikoglu A, Ozben T. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Sci Rep 2021; 11:13027. [PMID: 34158544 PMCID: PMC8219778 DOI: 10.1038/s41598-021-92447-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Faculty of Medicine, Department of Medical Biochemistry, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey.,Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Fatih Bozkurt
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering and Architecture, Department of Food Engineering, Mus Alparslan University, Mus, Turkey
| | - Mustafa Tahsin Yilmaz
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aslinur Sircan-Kucuksayan
- Faculty of Medicine, Department of Biophysics, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey
| | - Aysegul Hanikoglu
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tomris Ozben
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
6
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
7
|
Hermawan A, Putri H. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells. Asian Pac J Cancer Prev 2020; 21:2751-2762. [PMID: 32986377 PMCID: PMC7779440 DOI: 10.31557/apjcp.2020.21.9.2751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Metastasis is the most significant cause of morbidity and mortality in breast cancer patients. Previously, a combination of brazilin and doxorubicin has been shown to inhibit metastasis in HER2-positive breast cancer cells. This present study used an integrative bioinformatics approach to identify new targets and the molecular mechanism of brazilin in inhibiting metastasis in breast cancer. METHODS Cytotoxicity and mRNA arrays data were retreived from the DTP website, whereas genes that regulate metastatic breast cancer cells were retreived from PubMed with keywords "breast cancer metastasis". Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and Drug association analysis were carried out by using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). Construction of protein-protein interaction (PPI) network analysis was performed by STRING-DB v11.0 and Cytoscape, respectively. The genetic alterations of the potential therapeutic target genes of brazilin (PB) were analyzed using cBioPortal. RESULTS Analysis of cytotoxicity with the public database of COMPARE showed that brazilin exerts almost the same cytotoxicity in the NCI-60 cells panel showing by similar GI50 value, in which the lowest GI50 value was observed in MDA-MB 231, a metastatic breast cancer cells. KEGG enrichment indicated several pathways regulated by brazilin such as TNF signaling pathway, cellular senescence, and pathways in cancer. We found ten drugs that are associated with PB, including protein kinase inhibitors, TNFα inhibitors, enzyme inhibitors, and anti-inflammatory agents. CONCLUSION In conclusion, this study identified eight PB, including MMP14, PTGS2, ADAM17, PTEN, CCL2, PIK3CB, MAP3K8, and CXCL3. In addition, brazilin possibly inhibits metastatic breast cancer through inhibition of TNFα signaling. The study results study need to be validated with in vitro and in vivo studies to strengthen scientific evidence of the use of brazilin in breast cancer metastasis inhibition.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
8
|
Xu F, Liu G, Wang L, Wang X, Jin X, Bo W. miR-494 promotes progression of retinoblastoma via PTEN through PI3K/AKT signaling pathway. Oncol Lett 2020; 20:1952-1960. [PMID: 32724440 PMCID: PMC7377044 DOI: 10.3892/ol.2020.11749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has indicated that the dysregulation of microRNA (miRNA) occur in the pathogenesis of retinoblastoma (RB). Aim of the present study was to investigate the possible role of miR-494 (miR-494-3p) in RB. It was demonstrated that miR-494 expression was increased in RB tissue samples and cell lines. Also, it was prominently associated with clinicopathological features. Functional assays showed that RB cell proliferation, invasion and migration can be promoted by miR-494 overexpression. Besides, phosphatase and tensin homolog (PTEN) was verified as a possible target of miR-494 by a luciferase assay, western blot and qRT-PCR assay in RB. miR-494 and PTEN expression was negatively related in a correlation analysis on tumor tissues of 66 patients. In addition, PTEN was proved to reverse miR-494 effect on RB cell progression. Moreover, PI3K/AKT signaling pathway was validated to take part in RB progression. Taken together, the current study proposes that miR-494 might function as a tumor promoter and regulates RB progression through targeting PTEN.
Collapse
Affiliation(s)
- Fen Xu
- Department of Clinical Laboratory, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Guiqin Liu
- Department of Ophthalmology, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Lijuan Wang
- Department of Paediatrics, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiyan Wang
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Wen Bo
- Department of Ophthalmology, Maternity and Child Health Care of Zaozhuang, Zaozhuang Ophthalmological Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
9
|
Bai R, Cui Z, Ma Y, Wu Y, Wang N, Huang L, Yao Q, Sun J. The NF-κB-modulated miR-19a-3p enhances malignancy of human ovarian cancer cells through inhibition of IGFBP-3 expression. Mol Carcinog 2019; 58:2254-2265. [PMID: 31513316 DOI: 10.1002/mc.23113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy due to the lack of symptoms until advanced stages, and new diagnosis and treatment strategy is in urgent need. In this study, we found higher expression of miR-19a-3p in ovarian cancer tissues compared with that in the adjacent normal tissues. By chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) analysis, we showed that nuclear factor-kappaB (NF-κB) binds to the promoter of miR-19a-3p, leading to reduced expression in ovarian cancer cells. Further study indicated that miR-19a-3p inhibits the expression of insulin-like growth factor binding protein-3 (IGFBP-3), resulting in enhanced growth and migration of ovarian cancer cells in vitro and tumor growth in vivo. These results showed that miR-19a-3p enhances the oncogenesis of ovarian cancer through inhibition of IGFBP-3 expression, and which can be inhibited by NF-κB, suggesting an NF-κB/miR-19a-3p/IGFBP-3 pathway in the oncogenesis of ovarian cancer, which expands our understanding of ovarian cancer and they may contribute to the development of new diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ru Bai
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhenhua Cui
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yongjing Ma
- Department of Gynecological Tumors Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Wu
- Department of Pathogen Biology and Immunoly, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ningping Wang
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qing Yao
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunoly, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|