1
|
Wang H, Guo H, Shuai X, Ma Y, Zhang R, Wu M, He J, Ling J. Preparation, Characterization, and Safety Evaluation of a Submicron Emulsion Processed Using High-Pressure Homogenization to Protect Bitter Melon Seed Oil. Foods 2025; 14:850. [PMID: 40077553 PMCID: PMC11899332 DOI: 10.3390/foods14050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Bitter melon seed oil (BMSO), as a by-product of bitter gourd fruit processing, is rich in active ingredients and has unique medicinal potential. However, its solubility and dispersibility in water are poor when used directly. Therefore, this study aims to develop an eco-friendly submicron emulsion containing BMSO for intravenous injection and evaluate its safety. The BMSO submicron emulsion (BMSOSE) was prepared by high-pressure homogenization. The size, polydispersity index (PDI), ζ-potential, Turbiscan stability index (TSI), apparent viscosity, and morphology were characterized; in addition, an in vitro hemolysis test and acute toxicity test in mice were investigated in detail to evaluate the emulsion. The results demonstrated that the formulation and technological parameters of the BMSOSE were as follows: BMSO, 8% (w/w); egg yolk lecithin, 1.2% (w/w); F-68, 0.2% (w/w); pH, 5.0; homogenization pressure, 600 Pa; and number of homogenization cycle, 9. The obtained BMSOSE droplets exhibited a spherical shape with uniform size distribution with an average diameter of 221.3 nm, a PDI of 0.2, and a ζ-potential of -36 mV. There was no significant change in the fatty acid composition of BMSO and the BMSOSE. The safety tests demonstrated that the BMSOSE had no signs of hemolysis and had no toxicity to mice with LD50 > 64 mL/kg. This study provides a foundation for further development of BMSO and its preparations.
Collapse
Affiliation(s)
- Huiling Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
| | - Heng Guo
- Department of Pharmacy, Wuhan No. 1 Hospital (Traditional Chinese and Western Medicine Hospital of Wuhan), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China;
| | - Xiaoyan Shuai
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
| | - Yan Ma
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
| | - Rui Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muci Wu
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
| | - Jingren He
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.W.); (X.S.); (Y.M.); (R.Z.); (M.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiayan Ling
- Department of Traditional Chinese Medicine, Wuhan No. 1 Hospital (Traditional Chinese and Western Medicine Hospital of Wuhan), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| |
Collapse
|
2
|
Abbas M, Shabbir MA, Haq SMAU, Wahab HA, Hassan SA, Adeeba F, Ali A, Asif M, Nasir A, Mousavi Khaneghah A, Aadil RM. Harnessing the potential of bitter gourd seeds for food and nutrition- A comprehensive review. APPLIED FOOD RESEARCH 2024; 4:100508. [DOI: 10.1016/j.afres.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Ali YA, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAA, Shalaby FM, El-Nahass ES, Ahmed OM. Rutin and Hesperidin Revoke the Hepatotoxicity Induced by Paclitaxel in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2738351. [PMID: 37275575 PMCID: PMC10238143 DOI: 10.1155/2023/2738351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/07/2023]
Abstract
Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil A. A. Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, El-Sadat City University, El-Sadat City 32897, Egypt
| | - Fatma M. Shalaby
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
4
|
Psilopatis I, Vrettou K, Giaginis C, Theocharis S. The Role of Bitter Melon in Breast and Gynecological Cancer Prevention and Therapy. Int J Mol Sci 2023; 24:ijms24108918. [PMID: 37240264 DOI: 10.3390/ijms24108918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Phytotherapy has long represented a widely accepted treatment alternative to conventional therapy. Bitter melon is a vine with potent antitumor effects against numerous cancer entities. To date, no review article has, however, been published on the role of bitter melon in breast and gynecological cancer prevention and therapy. The current work constitutes the most comprehensive, up-to-date review of the literature, which highlights the promising anticancer effects of bitter melon on breast, ovarian, and cervical cancer cells and discusses future research recommendations.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Ali YA, Ahmed OM, Soliman HA, Abdel-Gabbar M, Al-Dossari M, El-Gawaad NSA, El-Nahass ES, Ahmed NA. Rutin and Hesperidin Alleviate Paclitaxel-Induced Nephrocardiotoxicity in Wistar Rats via Suppressing the Oxidative Stress and Enhancing the Antioxidant Defense Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5068304. [PMID: 36874615 PMCID: PMC9977529 DOI: 10.1155/2023/5068304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Paclitaxel is a primary chemotherapy agent that displays antitumor activity against a variety of solid tumors. However, the clinical effectiveness of the drug is hampered by its nephrotoxic and cardiotoxic side effects. Thus, this investigation aimed at assessing the protective effects of rutin, hesperidin, and their combination to alleviate nephrotoxicity caused by paclitaxel (Taxol), cardiotoxicity in male Wistar rats, as well as oxidative stress. Rutin (10 mg/kg body weight), hesperidin (10 mg/kg body weight), and their mixture were given orally every other day for six weeks. Rats received intraperitoneal injections of paclitaxel twice weekly, on the second and fifth days of the week, at a dose of 2 mg/kg body weight. In paclitaxel-treated rats, the treatment of rutin and hesperidin decreased the elevated serum levels of creatinine, urea, and uric acid, indicating a recovery of kidney functions. The cardiac dysfunction in paclitaxel-treated rats that got rutin and hesperidin treatment also diminished, as shown by a substantial reduction in elevated CK-MB and LDH activity. Following paclitaxel administration, the severity of the kidney and the heart's histopathological findings and lesion scores were markedly decreased by rutin and hesperidin administration. Moreover, these treatments significantly reduced renal and cardiac lipid peroxidation while markedly increased GSH content and SOD and GPx activities. Thus, paclitaxel likely induces toxicity in the kidney and the heart by producing oxidative stress. The treatments likely countered renal and cardiac dysfunction and histopathological changes by suppressing oxidative stress and augmenting the antioxidant defenses. Rutin and hesperidin combination was most efficacious in rescuing renal and cardiac function as well as histological integrity in paclitaxel-administered rats.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
6
|
Antimicrobial Activities Evaluation and Phytochemical Screening of Some Selected Plant Materials Used in Traditional Medicine. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010244. [PMID: 36615436 PMCID: PMC9822518 DOI: 10.3390/molecules28010244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Plant extracts are a source of valuable ingredients that can be used in many industries. This paper presents research on the content of selected bioactive compounds in extracts obtained from various plant materials. Raw materials have a documented use in traditional medicine not only in Poland. The tested plants were: bitter melon (fruit), elderberry (flowers, fruit, leaves), wild rose (fruit, flesh, seeds), mountain ash (fruit), guelder rose (fruit), and sea buckthorn (fruit, leaves, pomace). The main goal of these tests is to indicate the potential raw materials that may constitute an alternative source of bioactive compounds with antimicrobial activity. The plant material was tested for the content of bioactive antioxidant compounds and possible antimicrobial activity. The content of polyphenols (phenolic acids and flavonoids) was analyzed using UPLC/PDA, sterols, organic acids, and other bioactive compounds. The minimum inhibitory concentration (MIC) was determined. The total free phenolic acids (TPC) and total free flavonoids (TFC) of all plant raw materials was varied and ranged from 0.21 (mg RUTE/1 g of extract) to 38.30 mg RUTE/1 g of extract) for TFC. The concentration of sterols was, on average, about 10 mg/1 g of extract. The value of approx. 20 mg/1 g of the extract was recorded for bitter melon and beach rose. The content of organic acids was about 1.5 mg/1 g of the extract to even 13 mg/1 g of the extract for sea buckthorn berries. The most sensitive to the extracts' activity were the following bacteria: M. luteus, P. mirabilis, P. fragii, S. enteritidis, and E. coli. The tested plant materials can be used in various industries as a source of bioactive compounds of an antibacterial nature.
Collapse
|
7
|
Yuan MK, Kao JW, Wu WT, Chen CR, Chang CI, Wu YJ. Investigation of cell cytotoxic activity and molecular mechanism of 5β,19-epoxycucurbita-6,23( E)-diene-3β,19( R),25-triol isolated from Momordica charantia on hepatoma cells. PHARMACEUTICAL BIOLOGY 2022; 60:1214-1223. [PMID: 35760558 PMCID: PMC9246111 DOI: 10.1080/13880209.2022.2077766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells. OBJECTIVE To examine the mechanisms of ECDT-induced apoptosis in HCC cells. MATERIALS AND METHODS The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control. RESULTS ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways. DISCUSSION AND CONCLUSIONS Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Mei-Kang Yuan
- Department of Radiology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ju-Wen Kao
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
| | - Wen-Tung Wu
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
| | - Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Chi-I Chang
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
| |
Collapse
|
8
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
9
|
Cao QG, Guo Q, Bai J, Dong Y, Zhang XH, Hong WL. The apoptosis mechanisms of HepG2 cells induced by bitter melon seed. J Food Biochem 2021; 45:e13683. [PMID: 33844303 DOI: 10.1111/jfbc.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Liver cancer is one of the leading causes of cancer-related deaths in the world. Bitter melon seed (BMS) is well known for anti-inflammatory and anticancer properties. MicroRNA-421 (miR-421) is considered as a regulator of cancer initiation, tumor metastasis, and progression, interfering with transcription of the mRNAs responsible for the cancer pathogenesis. HepG2 cells were treated with BMS water extract (BMSW) for 24 hr, and the IC50 was 586.27 ± 0.07 µg/ml. The ROS, mitochondrial membrane potential, the protein expression, and the nuclear fragmentation after the treatment of BMSW were respectively detected. The increase of ROS resulted in the decrease of mitochondrial membrane potential, which induced the apoptosis of cells subsequently. BMSW inhibited the proliferation of HepG2 cells by blocking cell cycle in the S phase and influenced the nuclei and the expression of protein, leading to cellular laxity and apoptosis. The expression level of miR-421 in HepG2 was distinctly down-regulated by 13.74 fold with 600 µg/ml of BMSW. Comprehensive microarray and RT-PCR analysis identified six putative target genes of miR-421 (GADD45B, DUSP6, DUSP3, DUSP10, CASP3, and CAPN2). The relationships of DUSP6, CASP3, and miR-421 were further confirmed by miR-421 mimics/inhibitor transfection by RT-PCR and western blot. The CASP3 was identified as target gene of miR-421. BMSW induced the apoptosis of HepG2 cell by regulating miR-421 and CASP3. PRACTICAL APPLICATIONS: Hepatocellular carcinoma (HCC) is a malignant tumour with the fourth highest mortality rate in the world. Bitter melon seed (BMS) as edible and medical food has significant anticancer activity. Our study indicated the anticancer mechanisms of BMS and provided the scientific basis for the application of BMS in healthy or novel functional foods. BMS can be used as dietary supplements or nutritional fortifiers to improve the survival status of patients with liver cancer due to safety and effectiveness.
Collapse
Affiliation(s)
- Qing-Guo Cao
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Qin Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Hua Zhang
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Wen-Long Hong
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
10
|
Lan D, Jin X, Li M, He L. The expression and clinical significance of signal transducer and activator of transcription 3, tumor necrosis factor α induced protein 8-like 2, and runt-related transcription factor 1 in breast cancer patients. Gland Surg 2021; 10:1125-1134. [PMID: 33842256 PMCID: PMC8033044 DOI: 10.21037/gs-21-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study explored the expression and clinical significance of signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor α induced protein 8-like 2 (TIPE2), and runt-related transcription factor 1 (RUNX1) in breast cancer tissue. METHODS From October 2014 to October 2017, 68 breast cancer patients (68 breast cancer tissue specimens) who underwent a radical mastectomy in our hospital were set as the observation group and the corresponding normal tissue 3 cm away from the cancer tissue was selected as the control group. The expression levels of STAT3, TIPE2, and RUNX1 in the two groups were compared via immunohistochemical staining. Multiple logistic regression was then used to analyze the related risk factors affecting the 2-year prognosis of breast cancer patients. The receiver operating characteristic (ROC) curve was then plotted and the area under the ROC curve was calculated. The predictive values of STAT3, TIPE2, and RUNX1, and the predictive value of the three transcription factors combined on the 2-year prognostic survival of breast cancer patients were determined. RESULTS (I) In the observation group, the positive expression of STAT3 and the negative expression of TIPE2 and RUNX1 were significantly higher than those in the control group (P<0.05). (II) Of the 68 patients, 51 survived within 2 years and 17 patients died. Positive STAT3 expression, negative TIPE2 expression, negative RUNX1 expression, poor histological differentiation, TNM stage III-IV, and distant metastasis were all identified as factors that can affect the 2-year prognosis of breast cancer patients (P<0.05). (III) The ROC curve analysis examining the 2-year prognostic survival of breast cancer patients showed that the area under the curve achieved the largest value when the predictive values of STAT3, TIPE2, RUNX1 were combined. CONCLUSIONS The levels of STAT3, TIPE2, and RUNX1 expression in breast cancer tissues were significantly different from that in adjacent normal tissues. This suggested that the combined detection of STAT3, TIPE2, and RUNX1 may improve the rate of early breast cancer diagnosis. Furthermore, STAT3, TIPE2, and RUNX1 may be useful in evaluating the prognosis of the patients with breast cancer.
Collapse
Affiliation(s)
- Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xuchu Jin
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li He
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 2020; 256:117984. [PMID: 32593707 DOI: 10.1016/j.lfs.2020.117984] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzia, Istanbul 34956, Turkey
| | - Farid Hashemi
- DVM, Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|