1
|
Jia X, Qiang W, Chang L, Xiao K, Zhou R, Qiu Q, Jiang G, Li X, Chi C, Liu W, Zhang D. Integrative whole-genome methylation and transcriptome analysis reveals epigenetic modulation of glucose metabolism by dietary berberine in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111098. [PMID: 40250795 DOI: 10.1016/j.cbpb.2025.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The present research was designed to explore the epigenetic mechanism by which dietary berberine (BBR) affects glucose metabolism in fish. Blunt snout bream (Megalobrama amblycephala) is susceptible to disturbances in glucose metabolism when subjected to prolonged high-carbohydrate diets. This study aimed to elucidate whether BBR can enhance glucose regulation in M. amblycephala via modulating DNA methylation levels. Fish (average weight of 20.36 ± 1.44 g) were administered a normal-carbohydrate diet (NC, 30 % carbohydrate), a high-carbohydrate diet (HC, 43 % carbohydrate), or a high-carbohydrate diet supplemented with 50 mg/kg berberine (HB) for 10 weeks. Subsequently, global DNA methylation level, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR, and real-time quantitative PCR were employed to analyze the DNA methylation patterns and transcription results of the liver genome. The findings indicated that high carbohydrate diets induced glucose metabolism disorders in M. amblycephala, whereas BBR mitigated these metabolic disturbances by reducing methylation levels. WGBS results revealed that CG-type cytosine methylation predominated, and that DNA methylation mainly occurred in promoter, intron, and exon regions. Furthermore, analyses demonstrated a negative correlation between DNA methylation around the transcriptional start site and gene expression levels for 47 genes. Functional enrichment analysis revealed that these genes were associated with 60 KEGG pathways, including 12 genes implicated in the amelioration of insulin resistance, reduction of gluconeogenesis, and maintenance of glucose homeostasis. Consequently, we generated a comprehensive catalog of liver DNA methylation in M. amblycephala, which provides a foundational framework for future investigations into the epigenetic regulation of glucose metabolism by BBR.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ronghua Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyong Qiu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang K, Yin J, Chen J, Ma J, Si H, Xia D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155258. [PMID: 38522318 DOI: 10.1016/j.phymed.2023.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 03/26/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM), renowned for its holistic approach with a 2000-year history of utilizing natural remedies, offers unique advantages in disease prevention and treatment. Berberine, found in various Chinese herbs, has been employed for many years, primarily for addressing conditions such as diarrhea and dysentery. Berberine has recently become a research focus owing to its pharmacological activities and benefits to human bodies. However, little is known about the anti-inflammatory mechanism of berberine. PURPOSE To summarize recent findings regarding the pharmacological effects and mechanisms of berberine anti-inflammation and highlight and predict the potential therapeutic effects and systematic mechanism of berberine. METHODS Recent studies (2013-2023) on the pharmacological effects and mechanisms of berberine anti-inflammation were retrieved from Web of Science, PubMed, Google Scholar, and Scopus up to July 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were employed to predict the therapeutic effects and mechanisms of berberine against potential diseases. RESULTS The related pharmacological mechanisms of berberine anti-inflammation include the inhibition of inflammatory cytokine production (e.g., IL-1β, IL-6, TNF-α), thereby attenuating the inflammatory response; Inhibiting the activation of NF-κB signaling pathway and IκBα degradation; Inhibiting the activation of MAPK signaling pathway; Enhancing the activation of the STAT1 signaling pathway; Berberine interacts directly with cell membranes through a variety of pathways, thereby influencing cellular physiological activities. Berberine enhances human immunity and modulates immune system function, which is integral to addressing certain autoimmune and tumour-related health concerns. CONCLUSION This study expounds on the correlation between berberine and inflammatory diseases, encapsulating the mechanisms through which berberine treats select typical inflammatory ailments. Furthermore, it delves into a deeper understanding of berberine's effectiveness by integrating network pharmacology and molecular docking techniques in the context of treating inflammatory diseases. It provides guidance and reference for berberine's subsequent revelation of the modern scientific connotation of Chinese medicine.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Jie Ma
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China.
| | - Hongbin Si
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China.
| | - Diqi Xia
- Department of Rehabilitation Medicine, Lecong Hospital of Shunde, Foshan 528315, China.
| |
Collapse
|
3
|
Sun Y, Zhao Q, Fang H, Sun H, Yang L, Sun Y, Yan G, Han Y, Wang X. Evaluation of the key ingredient from the main production areas of Phellodendri Amurensis Cortex using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry. J Sep Sci 2024; 47:e2300836. [PMID: 38403444 DOI: 10.1002/jssc.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Phellodendri Amurensis Cortex (PAC) is a medicinal herb that has been generally used to treat diarrhea and jaundice. In order to comprehensively evaluate the PAC in the main production areas quality, a qualitative and quantitative method with highly effective, sensitive, and reliable was developed. The chemical compositions of PAC were analyzed, and fingerprints were established by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). Then, the determination of berberine, canthin-6-one, dictamnine, γ-fagarine, and magnoflorine from PAC samples was simultaneously performed using UPLC-QQQ-MS. Furthermore, the chemical components of PAC from different regions were compared and analyzed by combining hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. A total of 58 compounds were identified, including 36 alkaloids, four phenylpropanoids, seven terpenoids, four flavonoids and their glycosides, an organic acid compound, and six other components. The fingerprint results show that samples have good similarity. Meanwhile, the content of the five ingredients in different habitats is quite different. By multivariate statistical analysis, 18 batches of PAC could be divided into three categories, and 20 components were identified as differential markers of various origins. A comprehensive method of PAC quality evaluation and chemical composition difference analysis was established, which provided the scientific basis for quality evaluation and further pharmacological mechanism research.
Collapse
Affiliation(s)
- Yuran Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiqi Zhao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Heng Fang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Khatun M, Jana GC, Nayim S, Dhal A, Patra A, Hossain M. Evaluation of the size effect of hydrophobic ring substitution on 9-O position of berberine on DNA binding. J Biomol Struct Dyn 2023; 41:14299-14307. [PMID: 38073529 DOI: 10.1080/07391102.2023.2180436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
The interaction of deoxyribonucleic acid (DNA) with medicinally significant small molecules has long piqued the interest of researchers because its applications are directly related to the discovery of new classes of drugs. Keeping this in mind, here we report berberine derivatives and their interaction with calf thymus DNA (CT-DNA). In this report we discussed on the structural perspectives and thermodynamic characteristics of the interaction of four 9-O-substituted berberines (BRDR1 to BRDR4) with CT-DNA. The binding affinity of BRDR-DNA complexes increased with increasing the cycloalkane ring size of the substitution except BRDR2. The binding constant value obtained from UV-Visible spectral analysis was 1.12 × 106 for BRDR1, 0.37 × 106 for BRDR2, 1.72 × 106 for BRDR3 and 3.20 × 106 for BRDR4. Ferrocyanide quenching experiments revealed unequivocally that the analogues except BRDR2 had a partly intercalative binding to DNA. From the ITC experiment it was found that the bindings of BRDR1, BRDR3 and BRDR4 to DNA was favoured by negative enthalpy and positive entropy while BRDR2 was driven by positive enthalpy and positive entropy. In all cases the hydrophobic interaction plays a crucial role. Thus, the complete multispectroscopic and thermodynamic binding studies may be useful for new drug design and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Munira Khatun
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Gopal Chandra Jana
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Sk Nayim
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Asima Dhal
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Anirudha Patra
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|