1
|
Mosquera‐Sulbaran JA, Pedreañez A, Carrero Y, Callejas D. C-reactive protein as an effector molecule in Covid-19 pathogenesis. Rev Med Virol 2021; 31:e2221. [PMID: 34773448 PMCID: PMC7995022 DOI: 10.1002/rmv.2221] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jesús A. Mosquera‐Sulbaran
- Instituto de Investigaciones Clinicas “Dr. Americo Negrette”Facultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Adriana Pedreañez
- Catedra de InmunologiaEscuela de BioanalisisFacultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Yenddy Carrero
- Facultad de Ciencias de la SaludCarrera de MedicinaUniversidad Tecnica de AmbatoAmbatoEcuador
| | - Diana Callejas
- Facultad de Ciencias de la SaludDepartamento de Ciencias BiologicasUniversidad Tecnica de ManabiPortoviejoEcuador
| |
Collapse
|
2
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
3
|
Nascimento RA, Possomato-Vieira JS, Gonçalves-Rizzi VH, Bonacio GF, Rizzi E, Dias-Junior CA. Hypertension, augmented activity of matrix metalloproteinases-2 and -9 and angiogenic imbalance in hypertensive pregnancy are attenuated by doxycycline. Eur J Pharmacol 2018; 840:60-69. [PMID: 30336141 DOI: 10.1016/j.ejphar.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Preeclampsia is manifested as maternal hypertension and fetal growth restriction. Matrix metalloproteinases (MMPs) are involved in hypertension and doxycycline reduces blood pressure by inhibition of MMPs. Moreover, excessive levels of MMPs and reduced nitric oxide (NO) bioavailability have been related to preeclampsia. We investigated the involvement of MMPs in hypertension in pregnancy induced by Nω-Nitro-L-arginine methyl ester (L-NAME) in rats. To this end, zimography was performed to evaluate the activity of MMPs -2 and -9 in placenta, uterus and thoracic aorta, and systolic blood pressure, feto-placental development and metabolites of NO were evaluated. Also, plasma antioxidant capacity, plasma levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PLGF) were examined. Doxycycline prevented hypertensive pregnancy and significant reductions in number of pups induced by L-NAME. Low NO bioavailability was found in hypertensive pregnant rats treated (or not) with doxycycline. Increased activity of placental MMP-2 and MMP-9 and uterine MMP-2 were attenuated by doxycycline. MMP-2 activity of thoracic aorta showed no change after hypertension. Increases in PLGF with concomitant decreases in sFlt-1 levels were found with doxycycline treatment. Also, plasma antioxidant capacity was improved with doxycycline. Also, elevations of plasma antioxidant capacity were observed in hypertensive rats treated with doxycycline. Therefore, we suggest that L-NAME reduced NO and this triggered the increases in MMP-2 and -9 activities during hypertensive pregnancy. Importantly, increases in MMPs activation and angiogenic imbalance were attenuated by doxycycline and these effects were associated with decreases in systolic blood pressure.
Collapse
Affiliation(s)
- Regina A Nascimento
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - José S Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Victor H Gonçalves-Rizzi
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Gisele F Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Ding L, Zhang P, Wang X, Hao J, Aoki K, Kuroda S, Kasugai S. Effect of doxycycline-treated hydroxyapatite surface on bone apposition: A histomophometric study in murine maxillae. Dent Mater J 2017; 37:130-138. [PMID: 29176300 DOI: 10.4012/dmj.2017-007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Improved osseointegration of dental implants is imperative in clinic. Effect of doxycycline on promoting bone formation after implant placement was expected due to its inhibitory properties on inflammation and osteoclastogenesis. To evaluate new bone formation on the hydroxyapatite (HA)-coated implant surface, which was treated with doxycycline, in comparison with the untreated HA surface, half of the HA-coated implants were soaked in doxycycline solution (DOX group) whereas the other HA-coated implants were untreated (HA group). Eight weeks after extracting the maxillary first molars of 4-week-old male mice, the implants of both groups were placed at the extracted site. 4 and 8 weeks after surgery, the samples were evaluated radiologically and histomorphometrically. Bone-implant contact of DOX group was statistically higher than the one of HA group at 4 and 8 weeks. New bone area between the threads of the implants also statistically increased at 8 weeks in DOX group compared to HA group.
Collapse
Affiliation(s)
- Lin Ding
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Peng Zhang
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Xin Wang
- VIP Clinic, Beijing Stomatological Hospital, Capital Medical University
| | - Jia Hao
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Kazuhiro Aoki
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
5
|
Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK. Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug Deliv 2017; 24:1429-1440. [PMID: 28942680 PMCID: PMC8241001 DOI: 10.1080/10717544.2017.1377315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
To develop statistically optimized brain targeted Tween 80 coated chitosan nanoparticulate formulation for oral delivery of doxycycline hydrochloride for the treatment of psychosis and to evaluate its protective effect on ketamine induced behavioral, biochemical, neurochemical and histological alterations in mice. 32 full factorial design was used to optimize the nanoparticulate formulation to minimize particle size and maximize entrapment efficiency, while independent variables chosen were concentration of chitosan and Tween 80. The optimized formulation was characterized by particle size, drug entrapment efficiency, Fourier transform infrared, Transmission electron microscopy analysis and drug release behavior. Pure doxycycline hydrochloride (25 and 50 mg/kg, p.o.) and optimized doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles (DCNPopt) (equivalent to 25 mg/kg doxycycline hydrochloride, p.o.) were explored against ketamine induced psychosis in mice. The experimental studies for DCNPopt, with mean particle size 237 nm and entrapment efficiency 78.16%, elucidated that the formulation successfully passed through blood brain barrier and exhibited significant antipsychotic activity. The underlying mechanism of action was further confirmed by behavioral, biochemical, neurochemical estimations and histopathological study. Significantly enhanced GABA and GSH level and diminished MDA, TNF-α and dopamine levels were observed after administration of DCNPopt at just half the dose of pure doxycycline hydrochloride, showing better penetration of doxycyline hydrochloride in the form of Tween 80 coated nanoparticles through blood brain barrier. This study demonstrates the hydrophilic drug doxycycline hydrochloride, loaded in Tween 80 coated chitosan nanoparticles, can be effectively brain targeted through oral delivery and therefore represents a suitable approach for the treatment of psychotic symptoms.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Nidhi Sharma
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Neha Raina
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
6
|
Yu R, Zheng L, Cui Y, Zhang H, Ye H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology 2016; 103:1-15. [DOI: 10.1016/j.neuropharm.2015.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
|