1
|
Li Y, Kong Q, Yue J, Gou X, Xu M, Wu X. Genome-edited skin epidermal stem cells protect mice from cocaine-seeking behaviour and cocaine overdose. Nat Biomed Eng 2019; 3:105-113. [PMID: 30899600 PMCID: PMC6423967 DOI: 10.1038/s41551-018-0293-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/15/2018] [Indexed: 12/20/2022]
Abstract
Cocaine addiction is associated with compulsive drug-seeking, and exposure to the drug or to drug-associated cues leads to relapse, even after long periods of abstention. A variety of pharmacological targets and behavioral interventions have been explored to counteract cocaine addiction, but to date no market-approved medications for treating cocaine addiction or relapse exist, and effective interventions for acute emergencies resulting from cocaine overdose are lacking. We recently demonstrated that skin epidermal stem cells can be readily edited by using CRISPR (clustered regularly interspaced short palindromic repeats) and then transplanted back into the donor mice. Here, we show that the transplantation, into mice, of skin cells modified to express an enhanced form of butyrylcholinesterase, an enzyme that hydrolyzes cocaine, enables the long-term release of the enzyme and efficiently protects the mice from cocaine-seeking behavior and cocaine overdose. Cutaneous gene therapy through skin transplants that elicit drug elimination may offer a therapeutic option to address drug abuse.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Qingyao Kong
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ming Xu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA.
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Myagkova MA, Morozova VS. Vaccines for substance abuse treatment: new approaches in the immunotherapy of addictions. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
4
|
Biologic Approaches to Treat Substance-Use Disorders. Trends Pharmacol Sci 2016; 36:628-635. [PMID: 26435208 DOI: 10.1016/j.tips.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023]
Abstract
In contrast to traditional pharmacodynamic approaches to treat substance-use disorders (SUDs), the use of biologics (vaccines, monoclonal antibodies, and genetically modified enzymes) is based on a pharmacokinetic principle: reduce the amount of (and, ideally, eliminate) abused drug entering the central nervous system (CNS). Preclinical studies indicate that biologics are effective in both facilitating abstinence and preventing relapse to abused substances ranging from nicotine to heroin. While data are still emerging, the results from multiple clinical trials can best be described as mixed. Nonetheless, these clinical studies have already provided important insights using 'first-generation' tools that may inform the development of effective and commercially viable biologics to treat tobacco-, cocaine-, and methamphetamine-use disorders.
Collapse
|
5
|
Blum K, Thanos PK, Badgaiyan RD, Febo M, Oscar-Berman M, Fratantonio J, Demotrovics Z, Gold MS. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther 2015; 15:973-85. [PMID: 25974314 DOI: 10.1517/14712598.2015.1045871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. AREAS COVERED Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. EXPERT OPINION The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Waters RP, Moorman DE, Young AB, Feltenstein MW, See RE. Assessment of a proposed "three-criteria" cocaine addiction model for use in reinstatement studies with rats. Psychopharmacology (Berl) 2014; 231:3197-205. [PMID: 24615055 DOI: 10.1007/s00213-014-3497-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 02/07/2014] [Indexed: 01/08/2023]
Abstract
RATIONALE Relapse is a primary obstacle in the treatment of addiction disorders, and as such, understanding this phenomenon is a major effort of clinical and preclinical studies of cocaine addiction. OBJECTIVE A recently developed protocol uses laboratory rats to model cocaine addiction by examining three criteria of addiction-like behaviors (persistent seeking in the absence of drug, high motivation for drug, and resistance to punishment during drug seeking) to detect subjects that possess an addiction phenotype. We closely followed this protocol in order to detect rats possessing this addiction phenotype, with the goal of utilizing this model in future studies investigating potential therapies for relapse in human cocaine addicts. RESULTS The majority of the rats used in this study exhibited multiple characteristics thought to be associated with addiction-like behavior in rats, including robust reinstatement to multiple stimuli and high motivation to obtain cocaine. However, no rats displayed the complete addiction phenotype as previously described, due to a complete lack of addiction-like behavior in all subjects on two of the three addiction criteria (drug seeking in the absence of drug and resistance to punishment). CONCLUSIONS Our data highlight the independence of behavioral aspects of a rat addiction-like phenotype and suggest that some of these behavioral criteria may be altogether absent in some rat populations. Furthermore, our results suggest a closer review and analysis of some parameters used in this protocol and its global utility.
Collapse
Affiliation(s)
- R Parrish Waters
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charité Platz 1, 10117, Berlin, Germany,
| | | | | | | | | |
Collapse
|
7
|
Geng L, Gao Y, Chen X, Hou S, Zhan CG, Radic Z, Parks RJ, Russell SJ, Pham L, Brimijoin S. Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity. PLoS One 2013; 8:e67446. [PMID: 23840704 PMCID: PMC3696080 DOI: 10.1371/journal.pone.0067446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/18/2013] [Indexed: 11/18/2022] Open
Abstract
Gene transfer of a human cocaine hydrolase (hCocH) derived from butyrylcholinesterase (BChE) by 5 mutations (A199S/F227A/S287G/A328W/Y332G) has shown promise in animal studies for treatment of cocaine addiction. To predict the physiological fate and immunogenicity of this enzyme in humans, a comparable enzyme was created and tested in a conspecific host. Thus, similar mutations (A199S/S227A/S287G/A328W/Y332G) were introduced into mouse BChE to obtain a mouse CocH (mCocH). The cDNA was incorporated into viral vectors based on: a) serotype-5 helper-dependent adenovirus (hdAD) with ApoE promoter, and b) serotype-8 adeno-associated virus with CMV promoter (AAV-CMV) or multiple promoter and enhancer elements (AAV-VIP). Experiments on substrate kinetics of purified mCocH expressed in HEK293T cells showed 30-fold higher activity (U/mg) with 3H-cocaine and 25% lower activity with butyrylthiocholine, compared with wild type BChE. In mice given modest doses of AAV-CMV-mCocH vector (0.7 or 3×1011 particles) plasma hydrolase activity rose 10-fold above control for over one year with no observed immune response. Under the same conditions, transduction of the human counterpart continued less than 2 months and antibodies to hCocH were readily detected. The advanced AAV-VIP-mCocH vector generated a dose-dependent rise in plasma cocaine hydrolase activity from 20-fold (1010 particles) to 20,000 fold (1013 particles), while the hdAD vector (1.7×1012 particles) yielded a 300,000-fold increase. Neither vector caused adverse reactions such as motor weakness, elevated liver enzymes, or disturbance in spontaneous activity. Furthermore, treatment with high dose hdAD-ApoE-mCocH vector (1.7×1012 particles) prevented locomotor abnormalities, other behavioral signs, and release of hepatic alanine amino transferase after a cocaine dose fatal to most control mice (120 mg/kg). This outcome suggests that viral gene transfer can yield clinically effective cocaine hydrolase expression for lengthy periods without immune reactions or cholinergic dysfunction, while blocking toxicity from drug overdose.
Collapse
Affiliation(s)
- Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shurong Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zoran Radic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, LaJolla, California, United States of America
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Linh Pham
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gao Y, Geng L, Orson F, Kinsey B, Kosten TR, Shen X, Brimijoin S. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage. Chem Biol Interact 2013; 203:208-11. [PMID: 22935511 PMCID: PMC3537841 DOI: 10.1016/j.cbi.2012.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 11/20/2022]
Abstract
In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: (1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer; (2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100-120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone.
Collapse
Affiliation(s)
- Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Skolnick P, Volkow ND. Addiction therapeutics: obstacles and opportunities. Biol Psychiatry 2012; 72:890-1. [PMID: 23121867 PMCID: PMC4828659 DOI: 10.1016/j.biopsych.2012.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Phil Skolnick
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
10
|
Brimijoin S, Orson F, Kosten TR, Kinsey B, Shen XY, White SJ, Gao Y. Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice. Chem Biol Interact 2012; 203:212-6. [PMID: 22960160 DOI: 10.1016/j.cbi.2012.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 01/18/2023]
Abstract
We are investigating treatments for cocaine abuse based on viral gene transfer of a cocaine hydrolase (CocH) derived from human butyrylcholinesterase, which can reduce cocaine-stimulated locomotion and cocaine-primed reinstatement of drug-seeking behavior in rats for many months. Here, in mice, we explored the possibility that anti-cocaine antibodies can complement the actions of CocH to reduce cocaine uptake in brain and block centrally-evoked locomotor stimulation. Direct injections of test proteins showed that CocH (0.3 or 1mg/kg) was effective by itself in reducing drug levels in plasma and brain of mice given cocaine (10mg/kg, s.c., or 20mg/kg, i.p). Administration of cocaine antibody per se at a low dose (8 mg/kg, i.p.) exerted little effect on cocaine distribution. However, a higher dose of antibody (12 mg/kg) caused peripheral trapping (increased plasma drug levels), which led to increased cocaine metabolism by CocH, as evidenced by a 6-fold rise in plasma benzoic acid. Behavioral tests with small doses of CocH and antibody (1 and 8 mg/kg, respectively) showed that neither agent alone reduced mouse locomotor activity triggered by a very large cocaine dose (100mg/kg, i.p.). However, dual treatment completely suppressed the locomotor stimulation. Altogether, we found cooperative and possibly synergistic actions that warrant further exploration of dual therapies for treatment of cocaine abuse.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | |
Collapse
|