1
|
Alotaibi AZ, AlMalki RH, Al Mogren M, Sebaa R, Alanazi M, Jacob M, Alodaib A, Alfares A, Abdel Rahman AM. Exploratory Untargeted Metabolomics of Dried Blood Spot Samples from Newborns with Maple Syrup Urine Disease. Int J Mol Sci 2024; 25:5720. [PMID: 38891907 PMCID: PMC11171634 DOI: 10.3390/ijms25115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.
Collapse
Affiliation(s)
- Abeer Z. Alotaibi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Maha Al Mogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahamd Alodaib
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahmad Alfares
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
3
|
Vakili O, Mafi A, Pourfarzam M. Liver Disorders Caused by Inborn Errors of Metabolism. Endocr Metab Immune Disord Drug Targets 2024; 24:194-207. [PMID: 37357514 DOI: 10.2174/1871530323666230623120935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/27/2023]
Abstract
Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Kadıoğlu Yılmaz B, Akgül AH. Inherited Metabolic Diseases from Past to Present: A Bibliometric Analysis (1968-2023). CHILDREN (BASEL, SWITZERLAND) 2023; 10:1205. [PMID: 37508702 PMCID: PMC10378490 DOI: 10.3390/children10071205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Bibliometric studies on inherited metabolic diseases (IMDs) do not exist in the literature. Therefore, our research aims to conduct a bibliometric study to determine the current status, trending topics, and missing points of publications on IMDs. Between 1968 and 2023, we conducted a literature search with the keyword "inherited metabolic disease" in the SCOPUS database. We included research articles in medicine written in English and published in the final section. We created our data pool using VOSviewer, SciMAT, and Rstudio software programs for the bibliometric parameters of the articles that met the inclusion criteria. We performed a bibliometric analysis of the data with the R package "bibliometrix" and BibExcel programs. We included 2702 research articles published on IMDs. The top three countries that have written the most articles in this field are the USA (n = 501), the United Kingdom (n = 182), and China (n = 172). The most preferred keywords by the authors were: newborn screening (n = 54), mutation (n = 43), phenylketonuria (n = 42), children (n = 35), genetics (n = 34), and maple syrup urine disease (n = 32). Trending topics were osteoporosis, computed tomography, bone marrow transplantation in the early years of the study, chronic kidney disease, urea cycle disorders, next-generation sequencing, newborn screening, and familial hypercholesterolemia in the final years of the study. This study provides clinicians with a new perspective, showing that molecular and genetic studies of inherited metabolic diseases will play an essential role in diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Banu Kadıoğlu Yılmaz
- Department of Pediatric Nutrition and Metabolism, Faculty of Medicine, Selçuk University, Konya 42250, Turkey
| | - Ayşe Hümeyra Akgül
- Department of Pediatrics, Faculty of Medicine, Necmettin Erbakan University, Konya 42080, Turkey
| |
Collapse
|
5
|
Alrige M, Banjar H, Shuaib T, Ahmed A, Gharbawi R. Knowledge-Based Dietary Intake Recommendations of Nutrients for Pediatric Patients with Maple Syrup Urine Disease. Healthcare (Basel) 2023; 11:healthcare11030301. [PMID: 36766876 PMCID: PMC9914112 DOI: 10.3390/healthcare11030301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Maple syrup urine disease (MSUD) is a metabolic disorder characterized by a difficulty to digest and process proteins necessary for growth. To monitor and maintain the ideal growth of children with MSUD, caregivers need to carefully control the consumption of harmful branched-chain amino acids (BCAAs). The dietary limits of amino acids for MSUD patients are recommended and controlled by pediatricians and metabolic dietitians according to age, height, weight, and the prevailing percentage of amino acids in the body. This study introduces an intelligent dietary tool called MSUD Baby Buddy for caregivers of MSUD patients that tracks the amino acids intake out of baby formulas for babies 0-6 months old. This tool aims to provide accurate recommendations of the appropriate daily intake of protein and BCAAs based on the patients' data, plasma BCAAs, and formula preferences. We use a knowledge-based system, including knowledge acquisition and verification, as well as knowledge management tool validation, and the ripple-down rules are employed for building the system. MSUD Baby Buddy can support the maintenance of adequate amino acid levels and increase awareness about the control of BCAAs. The average usability of MSUD Baby Buddy is 84.25, indicating that the tool is intuitive and may help caregivers to easily determine the recommended doses of formula based on patients' biometric data and preferred formula. On the other hand, interviews with metabolic dietitians revealed some drawbacks, which were addressed to further improve the tool. MSUD Baby Buddy is expected to help caregivers of MSUD patients to independently track nutrient intake and reduce the number of visits to the pediatrician and metabolic dietitian.
Collapse
Affiliation(s)
- Mayda Alrige
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21577, Saudi Arabia
- Correspondence:
| | - Haneen Banjar
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21577, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Taghreed Shuaib
- Department of Genitics Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Amal Ahmed
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Raghad Gharbawi
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| |
Collapse
|
6
|
Understanding Inborn Errors of Metabolism through Metabolomics. Metabolites 2022; 12:metabo12050398. [PMID: 35629902 PMCID: PMC9143820 DOI: 10.3390/metabo12050398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are rare diseases caused by a defect in a single enzyme, co-factor, or transport protein. For most IEMs, no effective treatment is available and the exact disease mechanism is unknown. The application of metabolomics and, more specifically, tracer metabolomics in IEM research can help to elucidate these disease mechanisms and hence direct novel therapeutic interventions. In this review, we will describe the different approaches to metabolomics in IEM research. We will discuss the strengths and weaknesses of the different sample types that can be used (biofluids, tissues or cells from model organisms; modified cell lines; and patient fibroblasts) and when each of them is appropriate to use.
Collapse
|