1
|
Wu B, Lan X, Gao M, Wei W, Wang Y, Yang Y, Yu Z, Huang M, Wu Q. Elucidation of the molecular mechanism of type 2 diabetes mellitus affecting the progression of nonalcoholic steatohepatitis using bioinformatics and network pharmacology: A review. Medicine (Baltimore) 2024; 103:e39731. [PMID: 39287256 PMCID: PMC11404948 DOI: 10.1097/md.0000000000039731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Increasing evidence suggests that patients with diabetes are at increased risk of developing nonalcoholic steatohepatitis (NASH), but the underlying mechanisms that affect the progression of NASH remain unclear. In this study, we used bioinformatics and network pharmacology methods to explore the differentially expressed genes of NASH and the related genes of type 2 diabetes mellitus, and a total of 46 common targets were obtained. Gene ontology showed that the common targets were mainly involved in biological processes such as glucocorticoid, hormone, and bacterium responses. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis signal pathways were mainly in colorectal cancer, amphetamine addition, the peroxisome proliferator-activated receptor signaling pathway, and the toll-like receptor signaling pathway. The protein-protein interaction network identified 8 hub genes, and the co-expression network was analyzed to obtain 7 related functions and mutual proportions of hub genes. A total of 120 transcription factors were predicted for hub genes. Hub genes were closely related to immune cells, including neutropils and eosinophils. In addition, we identified 15 potential candidate drugs based on hub genes that are promising for the treatment of NASH. Type 2 diabetes mellitus can affect the progression of NASH by changing hormone levels and inflammatory responses through multiple targets and signaling pathways. Eight hub genes are expected to be potential targets for subsequent treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaohong Lan
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Wei
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuekun Wang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiyang Yu
- The fourth was assigned to the outpatient department, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Huang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinyan Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Yang X, Dong X, Li J, Zheng A, Shi W, Shen C, Liu J. Nanocurcumin attenuates pyroptosis and inflammation through inhibiting NF-κB/GSDMD signal in high altitude-associated acute liver injury. J Biochem Mol Toxicol 2024; 38:e23606. [PMID: 38050447 DOI: 10.1002/jbt.23606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Exposure to a hypobaric hypoxic environment at high altitudes can lead to liver injury, and mounting evidence indicates that pyroptosis and inflammation play important roles in liver injury. Curcumin (Cur) can inhibit pyroptosis and inflammation. Therefore, our purpose here was to clarify the mechanism underlying the protective effect of nanocurcumin (Ncur) and Cur in a rat model of high altitude-associated acute liver injury. Eighty healthy rats were selected and exposed to different altitudes (6000 or 7000 m) for 0, 24, 48, or 72 h. Fifty normal healthy rats were divided into normal control, high-altitude control, salidroside (40 mg/kg [Sal-40]), Cur (200 mg/kg [Cur-200]), and Ncur (25 mg/kg [Ncur-25]) groups and exposed to a high-altitude hypobaric hypoxic environment (48 h, 7000 m). Serum-liver enzyme activities (alanine transaminase, aspartate transaminase, and lactate dehydrogenase were detected and histopathology of liver injury was evaluated by hematoxylin and eosin staining, and inflammatory factors were detected in liver tissues by enzyme-linked immunosorbent assays. Pyroptosis-associated proteins (gasdermin D, gasdermin D N-terminal [GSDMD-N], pro-Caspase-1, and cleaved-Caspase-1 [cleaved-Casp1]) and inflammation-associated proteins (nuclear factor-κB [NF-κB], phospho-NF-κB [P-NF-κB], and high-mobility group protein B1 [HMGB1]) levels were analyzed by immunoblotting. Ncur and Cur inhibited increased serum-liver enzyme activities, alleviated liver injury in rats caused by high-altitude hypobaric hypoxic exposure, and downregulated inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-18, in rat liver tissues. The level of P-NF-κB, GSDMD-N, cleaved-Casp1, and HMGB1 in rat liver tissues increased significantly after high-altitude exposure. Ncur and Cur downregulated P-NF-κB, GSDMD-N, cleaved-Casp-1, and HMGB1. Ncur and Cur may inhibit inflammatory responses and pyroptosis in a rat model of high altitude-associated acute liver injury.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjang Military Command, Urumqi, China
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiang Dong
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiajia Li
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medicine, Beijing, China
| | - Wenhui Shi
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Caifu Shen
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiangwei Liu
- Graduate School, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Musa AS, Abdul Hadi MFR, Hashikin NAA, Ashour NI, Ying CK. Dosimetric assessment of Gadolinium-159 for hepatic radioembolization: Tomographic images and Monte Carlo simulation. Appl Radiat Isot 2023; 199:110916. [PMID: 37393764 DOI: 10.1016/j.apradiso.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
A common therapeutic radionuclide used in hepatic radioembolization is yttrium-90 (90Y). However, the absence of gamma emissions makes it difficult to verify the post-treatment distribution of 90Y microspheres. Gadolinium-159 (159Gd) has physical properties that are suitable for therapy and post-treatment imaging in hepatic radioembolization procedures. The current study is innovative for conducting a dosimetric investigation of the use of 159Gd in hepatic radioembolization by simulating tomographic images using the Geant4 application for tomographic emission (GATE) Monte Carlo (MC) simulation. For registration and segmentation, tomographic images of five patients with hepatocellular carcinoma (HCC) who had undergone transarterial radioembolization (TARE) therapy were processed using a 3D slicer. The tomographic images with 159Gd and 90Y separately were simulated using the GATE MC Package. The output of simulation (dose image) was uploaded to 3D slicer to compute the absorbed dose for each organ of interests. 159Gd were able to provide a recommended dose of 120 Gy to the tumour, with normal liver and lungs absorbed doses close to that of 90Y and less than the respective maximum permitted doses of 70 Gy and 30 Gy, respectively. Compared to 90Y, 159Gd requires higher administered activity approximately 4.92 times to achieve a tumour dose of 120 Gy. Thus; this research gives new insights into the use of 159Gd as a theranostic radioisotope, with the potential to be used as a90Y alternative for liver radioembolization.
Collapse
Affiliation(s)
- Ahmed Sadeq Musa
- School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia; Department of Physiology and Medical Physics, College of Medicine, University of Kerbala, 56001, Kerbala, Iraq
| | | | | | - Nabeel Ibrahim Ashour
- School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia; Department of Physics, College of Science, University of Kerbala, 56001, Kerbala, Iraq
| | - Chee Keat Ying
- Oncological & Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
4
|
Micali C, Russotto Y, Caci G, Ceccarelli M, Marino A, Celesia BM, Pellicanò GF, Nunnari G, Venanzi Rullo E. Loco-Regional Treatments for Hepatocellular Carcinoma in People Living with HIV. Infect Dis Rep 2022; 14:43-55. [PMID: 35076514 PMCID: PMC8788283 DOI: 10.3390/idr14010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 75-90% of primary liver cancers and is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. In the HIV-positive population, the risk of HCC is approximately four times higher than in the general population, with higher cancer-specific mortality than in HIV-negative patients. In most cases, HCC diagnosis is made in patients younger than the HIV-negative population and in the intermediate-advanced stage, thus limiting the therapeutic possibilities. Treatment choice in HIV-positive patients with HCC is subject to cancer staging, liver function and health status, as for HIV-negative and non-HIV-negative HCC patients. There are relatively few studies on the efficacy and safety in HIV-positive patients to date in loco-regional treatments for HCC. So far, literature shows that curative treatments such as radiofrequency ablation (RFA) have no significant differences in overall survival between HIV-positive and HIV-negative patients, as opposed to palliative treatments such as TACE, where there is a significant difference in overall survival. Although it can be assumed that the most recently discovered loco-regional therapies are applicable to HIV-positive patients with HCC in the same way as HIV-negative patients, further studies are needed to confirm this hypothesis. The purpose of our review is to evaluate these treatments, their efficacy, effectiveness, safety and their applicability to HIV-positive patients.
Collapse
Affiliation(s)
- Cristina Micali
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Ylenia Russotto
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Grazia Caci
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
- Unit of Infectious Diseases, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
| | - Benedetto Maurizio Celesia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
| | - Giovanni Francesco Pellicanò
- Unit of Infectious Diseases, Department of Adult and Childhood Human Pathology “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| |
Collapse
|