1
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
2
|
Higino T, França R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed Phys Eng Express 2022; 8. [PMID: 35439740 DOI: 10.1088/2057-1976/ac682c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
The use of nanoparticles as biomaterials with applications in the biomedical field is growing every day. These nanomaterials can be used as contrast imaging agents, combination therapy agents, and targeted delivery systems in medicine and dentistry. Usually, nanoparticles are found as synthetic or natural organic materials, such as hydroxyapatite, polymers, and lipids. Besides that, they are could also be inorganic, for instance, metallic or metal-oxide-based particles. These inorganic nanoparticles could additionally present magnetic properties, such as superparamagnetic iron oxide nanoparticles. The use of nanoparticles as drug delivery agents has many advantages, for they help diminish toxicity effects in the body since the drug dose reduces significantly, increases drugs biocompatibility, and helps target drugs to specific organs. As targeted-delivery agents, one of the applications uses nanoparticles as drug delivery particles for bone-tissue to treat cancer, osteoporosis, bone diseases, and dental treatments such as periodontitis. Their application as drug delivery agents requires a good comprehension of the nanoparticle properties and composition, alongside their synthesis and drug attachment characteristics. Properties such as size, shape, core-shell designs, and magnetic characteristics can influence their behavior inside the human body and modify magnetic properties in the case of magnetic nanoparticles. Based on that, many different studies have modified the synthesis methods for these nanoparticles and developed composite systems for therapeutics delivery, adapting, and improving magnetic properties, shell-core designs, and particle size and nanosystems characteristics. This review presents the most recent studies that have been presented with different nanoparticle types and structures for bone and dental drug delivery.
Collapse
Affiliation(s)
- Taisa Higino
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada
| | - Rodrigo França
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada.,Dental Biomaterials Research Lab, Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Effects of Nanofiber Scaffolds Coated with Nanoparticulate and Microparticulate Freeze Dried Bone Allograft on the Morphology, Adhesion, and Proliferation of Human Mesenchymal Stem Cells. IRANIAN BIOMEDICAL JOURNAL 2022; 26:193-201. [PMID: 35633638 PMCID: PMC9440688 DOI: 10.52547/ibj.26.3.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Freeze dried bone allograft nanoparticles on a nanofiber membrane may serve as an ideal scaffold for bone regeneration. This study aimed to assess the biological behavior of human MSCs in terms of proliferation and adhesion to nanoparticulate and microparticulate FDBA scaffolds on PLLA nanofiber membrane. Methods: In this experimental study, PLLA nanofiber scaffolds were synthesized by the electrospinning method. The FDBA nanoparticles were synthesized mechanically. The FDBA nanoparticles and microparticles were loaded on the surface of PLLA nanofiber membrane. A total of 64 scaffold samples in four groups of n-FDBA/PLLA, FDBA/PLLA, PLLA and control were placed in 24-well polystyrene tissue culture plates; 16 wells were allocated to each group. Data were analyzed using one-way ANOVA and Bonferroni test. Results: The proliferation rate of MSCs was significantly higher in the nanoparticulate group compared to the microparticulate group at five days (p = 0.034). Assessment of cell morphology at 24 hours revealed spindle-shaped cells with a higher number of appendages in the nanoparticulate group compared to other groups. Conclusion: MSCs on n-FDBA/PLLA scaffold were morphologically more active and flatter with a higher number of cellular appendages, as compared to FDBA/PLLA. It seems that the nanoparticulate scaffold is superior to the microparticulate scaffold in terms of proliferation, attachment, and morphology of MSCs in vitro.
Collapse
|
4
|
Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Lemos
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- Centre of Physics (CFUM) University of Minho Campus de Gualtar 4710-057 Braga Portugal
| | - F. Raquel Maia
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
5
|
Kamel R, El-Wakil NA, Elkasabgy NA. Calcium-Enriched Nanofibrillated Cellulose/Poloxamer in-situ Forming Hydrogel Scaffolds as a Controlled Delivery System of Raloxifene HCl for Bone Engineering. Int J Nanomedicine 2021; 16:6807-6824. [PMID: 34675509 PMCID: PMC8502541 DOI: 10.2147/ijn.s323974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from an agricultural waste (sugar cane) was utilized to prepare injectable in-situ forming hydrogel scaffolds (IHS) for regenerative medicine. METHODS TONFC was prepared and characterized for its morphology and chemical structure using TEM and FT-IR, respectively. The cold method was applied to prepare hydrogels. Various concentrations of poloxamer 407 were added to the prepared TONFC (0.5%w/w). Different sources of calcium, Fujicalin® (DCP) or hydroxyapatite (TCP), were used to formulate the aimed calcium-enriched raloxifene hydrochloride-loaded IHS. Gelation temperature, drug content, injectability and in-vitro drug release were evaluated along with the morphological characters. Cytocompatibility studies and tissue regeneration properties were assessed on Saos-2 cells. RESULTS TEM photograph of TONFC showed fibrous nanostructure. The selected formulation "Ca-IHS4" composed of TONFC+15% P407+10% TCP showed the most prolonged release pattern for 12 days with the least burst effect (about 25% within 24 h). SEM micro-photographs of the in-situ formed scaffolds showed a highly porous 3D structure. Cytocompatibility studies of formulation "Ca-IHS4" revealed the biocompatibility as well as improved cell adhesion, alkaline phosphatase enzyme activity and calcium ion deposition. CONCLUSION The outcomes suggest that Ca-IHS4 presents a simple, safe-line and non-invasive strategy for bone regeneration.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Nahla A El-Wakil
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
6
|
Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 2021; 169:105626. [PMID: 33892092 DOI: 10.1016/j.phrs.2021.105626] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Understanding the in vitro biology and behavior of human osteoblasts is crucial for developing research models that reproduce closely the bone structure, its functions, and the cell-cell and cell-matrix interactions that occurs in vivo. Mimicking bone microenvironment is challenging, but necessary, to ensure the clinical translation of novel medicines to treat more reliable different bone pathologies. Currently, bone tissue engineering is moving from 2D cell culture models such as traditional culture, sandwich culture, micro-patterning, and altered substrate stiffness, towards more complex 3D models including spheroids, scaffolds, cell sheets, hydrogels, bioreactors, and microfluidics chips. There are many different factors, such cell line type, cell culture media, substrate roughness and stiffness that need consideration when developing in vitro models as they affect significantly the microenvironment and hence, the final outcome of the in vitro assay. Advanced technologies, such as 3D bioprinting and microfluidics, have allowed the development of more complex structures, bridging the gap between in vitro and in vivo models. In this review, past and current 2D and 3D in vitro models for human osteoblasts will be described in detail, highlighting the culture conditions and outcomes achieved, as well as the challenges and limitations of each model, offering a widen perspective on how these models can closely mimic the bone microenvironment and for which applications have shown more successful results.
Collapse
Affiliation(s)
- I Yuste
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - A Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial. Facultad de Farmacia. Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
8
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Siqueira IAWB, Amaral SS, de Moura NK, Machado JPB, Backes EH, Passador FR, Camargo SEA, de Vasconcellos LMR, Trichês ES. In vitro bioactivity and biological assays of porous membranes of the poly(lactic acid) containing calcium silicate fibers. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03021-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Cristofaro F, Gigli M, Bloise N, Chen H, Bruni G, Munari A, Moroni L, Lotti N, Visai L. Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. NANOSCALE 2018; 10:8689-8703. [PMID: 29701213 DOI: 10.1039/c8nr00677f] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Innovative nanofibrous scaffolds have attracted considerable attention in bone tissue engineering, due to their ability to mimic the hierarchical architecture of an extracellular matrix. Aiming at investigating how the polymer chemistry and fiber orientation of electrospun scaffolds (ES) based on poly(butylene succinate) (PBS) and poly(butylene succinate/diglycolate) (P(BS80BDG20)) affect human osteoblast differentiation, uniaxially aligned (a-) and randomly (r-) distributed nanofibers were produced. Although human osteoblastic SAOS-2 cells were shown to be viable and adherent onto all ES materials, a-P(BS80BDG20) exhibited the best performance both in terms of cellular phosphorylated focal adhesion kinase expression and in terms of alkaline phosphatase activity, calcified bone matrix deposition and quantitative gene expression of bone specific markers during differentiation. It has been hypothesized that the presence of ether linkages may lead to an increased density of hydrogen bond acceptors along the P(BS80BDG20) backbone, which, by interacting with cell membrane components, can in turn promote a better cell attachment on the copolymer mats with respect to the PBS homopolymer. Furthermore, although displaying the same chemical structure, r-P(BS80BDG20) scaffolds showed a reduced cell attachment and osteogenic differentiation in comparison with a-P(BS80BDG20), evidencing the importance of nanofiber alignment. Thus, the coupled action of polymer chemical structure and nanofiber alignment played a significant role in promoting the biological interaction.
Collapse
Affiliation(s)
- Francesco Cristofaro
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moratin H, Scherzad A, Gehrke T, Ickrath P, Radeloff K, Kleinsasser N, Hackenberg S. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:247-259. [PMID: 29150876 DOI: 10.1002/em.22156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
The increasing usage of zinc oxide nanoparticles (ZnO-NPs) in industrial applications as well as in consumer products raises concern regarding their potential adverse effects to a greater extend. Numerous studies have demonstrated toxic properties of NPs, however there is still a lack of knowledge concerning the underlying mechanisms. This study was designed to systematically investigate cytotoxicity, apoptosis, cell cycle alterations, and genotoxicity induced by ZnO-NP. Moreover, it was an aim of the investigations to specify the diverse effects of nanoparticle exposure in malignant in comparison with non-malignant cells. Therefore, human head and neck squamous cell carcinoma-derived FaDu cells were incubated with 4-20 µg/ml of ZnO-NPs for 1-48 hr and tested for cell viability, cell cycle alterations, apoptosis and caspase-3 gene expression as a sensitive marker of molecular apoptotic processes with regard to time- and dose-dependent effects. Human mesenchymal bone marrow stem cells were used as non-malignant representatives to examine oxidative stress-related genotoxicity. Results showed a significant reduction in cell viability as well as dose- and time-dependent increase of apoptotic cells following nanoparticle treatment. Likewise, caspase-3 gene expression enhanced already before first apoptotic cells were detectable. It could be observed that doses that were cytotoxic in tumor cells did not reduce viability in stem cells. However, the same concentrations already induced significant DNA damage. The findings of the study suggest to keep a more critical eye on the use of nanoparticles as anti-cancer agents. Yet, additional in vivo studies are needed to assess safety concerns for consumers and patients. Environ. Mol. Mutagen. 59:247-259, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Thomas Gehrke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Pascal Ickrath
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Katrin Radeloff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Germany
| |
Collapse
|
12
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|