1
|
Osman MEM, Osman RSH, Elmubarak SAA, Ibrahim MA, Abakar HBM, Dirar AI, Konozy EHE. In silico analysis of L- and G-type lectin receptor kinases in tomato: evolution, diversity, and abiotic responses. BMC Genomics 2024; 25:1143. [PMID: 39604848 PMCID: PMC11600720 DOI: 10.1186/s12864-024-11014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Solanum lycopersicum (family: Solanaceae) is a crucial crop and model organism for many phenotypic traits, and its sequenced genome provides valuable insights into plant biology and crop improvement. This study investigated lectin receptor-like kinases (LecRLKs) in tomato, focusing on L-type and G-type families. Mining the tomato genome (ITAG2.4) revealed 161 putative lectin genes across seven families, with GNA-related genes being the most abundant. Gene duplication analysis indicated that tandem and segmental duplications were the primary mechanisms driving LecRLK gene family expansion, particularly for G-type LecRLKs. These duplicated genes showed evidence of both purifying and negative selection, suggesting functional conservation and sub-functionalization. L-type and G-type LecRLKs exhibited diverse domain rearrangement architectures and subcellular localizations, with G-type LecRLKs showing greater expansion and architectural diversity. Differential expression analysis during abiotic stress (drought, heat, and cold stress) revealed key responsive genes. During drought stress, 63.2% of L-type and 18.5% of G-type LecRLK genes were expressed, with L-type Solyc09g005000.1 and G-type Solyc03g078360.1 genes showing significant 2-fold upregulation. Heat stress (42 °C) induced the upregulation of L-type Solyc04g071000.1 and G-type Solyc03g078360.1 and Solyc04g008400.1, particularly after 12-24 h of exposure. Promoter analysis revealed numerous stress-related cis-elements. Transcription factor predictions and miRNA targeting sites suggest complex regulatory mechanisms. This comprehensive in silico characterization of tomato LecRLKs, including their expansion patterns and evolutionary pressures, provides insights into their potential roles in abiotic stress responses and lays the groundwork for enhancing crop resilience through targeted breeding or genetic engineering approaches.
Collapse
Affiliation(s)
| | | | - Sara A A Elmubarak
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Centre, Riyadh, 11481, Saudi Arabia
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | - Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan.
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
2
|
Idries AH, Naser EH, Dafalla MB, Elmubarak SA, Abdelrahim YE, Abdalrhman EA, Alwali SM, Ahmed BM, Yousef BA, Ebrahim RM, Abdellatif AO, Awadallah AK, Osman MEM, Konozy EH. Biological activity and characterization of leaf and seed lectins from Terminalia brownii: Insights into their analgesic and antiulcer properties. Heliyon 2024; 10:e39351. [PMID: 39498066 PMCID: PMC11532835 DOI: 10.1016/j.heliyon.2024.e39351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Terminalia brownii Fresen, an African medicinal plant, is known for its analgesic, antiulcer, and antimicrobial properties, with its leaves, bark, and fruits deeply ingrained in indigenous healing practices. Two lectins, TerBLL (from leaves) and TerBSL (from seeds) of Terminalia brownii Fresen, were purified using salting-out and affinity chromatography on a fetuin-agarose column. The purified lectins were then assessed for protein yield, hemagglutination activity, and physicochemical properties. Both TerBLL and TerBSL have subunits with molecular weights of 57.3 and 65.7 kDa, respectively. TerBLL remains stable at 60-80 °C and is activated by Mn+2, while TerBSL is activated by Zn+2. These lectins maintain consistent activity under acidic conditions, with TerBLL demonstrating heightened activity at extreme alkaline pH. TerBLL retained 50 % of its activity in 2-8M urea, in contrast to the 13 % of TerBSL. Investigation of the properties of TerBLL revealed that it had antinociceptive effects, reducing abdominal pain and prolonging latency time in the hotplate assay, potentially through μ-opioid receptor blockade akin to that of morphine. TerBLL exhibits antiulcer activity at doses of 0.25 and 1 mg/kg, reducing ulcer formation by up to 33 %, comparable to that of pantoprazole (80 mg/kg). The physiochemical attributes of TerBLL, in addition to its pain-relieving and gastroprotective effects, underscore its therapeutic promise, which is consistent with its traditional use.
Collapse
Affiliation(s)
- Ahmed H. Idries
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | - Eva H. Naser
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | - Maha B. Dafalla
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | | | | | | | | | - Bashir M. Ahmed
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Khartoum, Sudan
| | | | - Reem M.A. Ebrahim
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | | | | | | | - Emadeldin H.E. Konozy
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Konozy EHE, Dirar AI, Osman MEM. Lectins of the Araceae family: Insights, distinctions, and future avenues-A three-decade investigation. Biochim Biophys Acta Gen Subj 2024; 1868:130667. [PMID: 38971261 DOI: 10.1016/j.bbagen.2024.130667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The Araceae family boasts >3000 species of flowering plants that thrive across the tropics. Among the focal points of study within this family are lectins, proteins with affinity for binding carbohydrates. This review endeavors to gather data gleaned from numerous studies conducted over the past three decades on lectins extracted from Araceae plants. Our examination spans their extraction and purification methods, their specific interactions with carbohydrates, their molecular structures, and various physicochemical characteristics. Furthermore, we investigated the biological activities of these lectins and investigated the outcomes of cloning their genes. Despite their apparent similarities, these lectins exhibit notable distinctions, particularly regarding their unique preferences in interacting with erythrocytes from animals and humans, their sugar affinities, the critical amino acids for their functionality, the molecular weights of their subunits and their respective topologies, and ultimately, their dimerization and 3D β-prism-II structure, which reportedly diverge from those observed in other GNA-related lectins. These discrepancies not only deepen our understanding of monocot lectins but also render these proteins inherently captivating. This review marks the inaugural attempt at consolidating almost all published reports on lectins from the Araceae family, with the aim of furnishing glycobiology scientists with essential insights into potential laboratory challenges, the characteristics of these lectins, and avenues for future research.
Collapse
Affiliation(s)
- Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan; Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana.
| | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, P.O. Box 2404, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
4
|
Osman MEM, Osman RSH, Elmubarak SA, Dirar AI, Konozy EHE. Phoenix dactylifera (date palm; Arecaceae) putative lectin homologs: Genome-wide search, architecture analysis, and evolutionary relationship. Saudi J Biol Sci 2023; 30:103676. [PMID: 37213699 PMCID: PMC10197109 DOI: 10.1016/j.sjbs.2023.103676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
The date palm, Phoenix dactylifera, is a vital crop in nations in the Middle East and North Africa. The date palm was thought to have outstanding traditional medicinal value because it was abundant in phytochemicals with diverse chemical structures. The date palm's ability to withstand harsh environments could be partly attributed to a class of proteins known as lectins, which are carbohydrate-binding proteins that can bind sugar moieties reversibly and without changing their chemical structures. After scanning the genome of P. dactylifera (GCF 009389715.1), this in silico study discovered 196 possible lectin homologs from 11 different families, some specific to plants. At the same time, others could also be found in other kingdoms of life. Their domain architectures and functional amino acid residues were investigated, and they yielded a 40% true-lectin with known conserved carbohydrate-binding residues. Further, their probable subcellular localization, physiochemical and phylogenetic analyses were also performed. Scanning all putative lectin homologs against the anticancer peptide (ACP) dataset found in the AntiCP2.0 webpage identified 26 genes with protein kinase receptors (Lec-KRs) belonging to 5 lectin families, which are reported to have at least one ACP motif. Our study offers the first account of Phoenix-lectins and their organization that can be used for further structural and functional analysis and investigating their potential as anticancer proteins.
Collapse
Affiliation(s)
| | | | - Sara A.A Elmubarak
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan
| | - Amina I. Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | - Emadeldin Hassan E. Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan
- Pharmaceutical Research and Development, Centre Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| |
Collapse
|
5
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
6
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|