1
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Penglong T, Saensuwanna A, Jantapaso H, Phuwakanjana P, Jearawiriyapaisarn N, Paiboonsukwong K, Wanichsuwan W, Srinoun K. miR-214 aggravates oxidative stress in thalassemic erythroid cells by targeting ATF4. PLoS One 2024; 19:e0300958. [PMID: 38625890 PMCID: PMC11020981 DOI: 10.1371/journal.pone.0300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and β-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in β- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in β- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Apisara Saensuwanna
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Husanai Jantapaso
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pongpon Phuwakanjana
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worrawit Wanichsuwan
- Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Ren Y, Shi J, Liu S, Zhu W, Shao A, Qiao Y, Li Y, Liu Y, Cheng Y, Liu Y. Transcription factor AP-2 gamma/Krüppel-like factor 10 axis is involved in miR-3656-related dysfunction of endothelial cells in hypertension. J Hypertens 2023; 41:554-563. [PMID: 36723462 DOI: 10.1097/hjh.0000000000003359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dysfunction of endothelial cells links to microvascular rarefaction, reflecting the pathogenesis of hypertension. Our previous studies found that miR-3656 reduces nitric oxide generation and von Willebrand factor (vWF) cleavage, thereby retarding blood flow and potentially increasing blood pressure. In this paper, we investigated mechanism of transcription regulation contributing to miR-3656-damaged endothelial cells in hypertension. METHODS The effects of miR-3656 on function of endothelial cells were analyzed on the basis of proliferation, migration, tube formation, and apoptosis. The mRNA level and protein level of genes were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Dual-luciferase reporter assay was performed to confirm the binding between miR-3656 and 3' untranslated region (UTR) of transcription factor AP-2 gamma ( TFAP2C ). The binding between TFAP2C and the promoter region of Krüppel-like factor 10 ( KLF10 ) was confirmed by chromatin immunoprecipitation-qPCR assay. RESULTS miR-3656 impaired the cell proliferation, migration, tube formation, and apoptosis of endothelial cells. miR-3656 inhibited the expression of TFAP2C by directly targeting 3'UTR of TFAP2C ; moreover, miR-3656-induced injury of endothelial cells was rescued by TFAP2C overexpression. Furthermore, downregulated TFAP2C decreased KLF10 expression by binding to KLF10 promoter region, and upregulated KLF10 reversed the effects of silencing TFAP2C on endothelial cells. These inhibitory processes led to interference of miR-3656 to KLF10-promoted function of endothelial cells. CONCLUSION TFAP2C/KLF10 axis is involved in miR-3656-related dysfunction of endothelial cells in hypertension. The 3'UTR of TFAP2C and KLF10 promoter region are the hubs of the TFAP2C/KLF10 axis.
Collapse
Affiliation(s)
- Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Wenfei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Aiyu Shao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yunkai Liu
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| |
Collapse
|
5
|
Silva-Llanes I, Shin CH, Jiménez-Villegas J, Gorospe M, Lastres-Becker I. The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis. Antioxidants (Basel) 2023; 12:641. [PMID: 36978889 PMCID: PMC10045347 DOI: 10.3390/antiox12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The epigenetic regulation of gene expression is a complex and tightly regulated process that defines cellular identity and is associated with health and disease processes. Oxidative stress is capable of inducing epigenetic modifications. The transcription factor NRF2 (nuclear factor erythroid-derived 2-like 2) is a master regulator of cellular homeostasis, regulating genes bearing antioxidant response elements (AREs) in their promoters. Here, we report the identification of ARE sequences in the promoter regions of genes encoding several epigenetic regulatory factors, such as histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and proteins involved in microRNA biogenesis. In this research, we study this possibility by integrating bioinformatic, genetic, pharmacological, and molecular approaches. We found ARE sequences in the promoter regions of genes encoding several HDACs, DNMTs, and proteins involved in miRNA biogenesis. We confirmed that NRF2 regulates the production of these genes by studying NRF2-deficient cells and cells treated with dimethyl fumarate (DMF), an inducer of the NRF2 signaling pathway. In addition, we found that NRF2 could be involved in the target RNA-dependent microRNA degradation (TDMD) of miR-155-5p through its interaction with Nfe2l2 mRNA. Our data indicate that NRF2 has an epigenetic regulatory function, complementing its traditional function and expanding the regulatory dimensions that should be considered when developing NRF2-centered therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - José Jiménez-Villegas
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
6
|
Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol 2023; 14:1097491. [PMID: 36911728 PMCID: PMC9992549 DOI: 10.3389/fimmu.2023.1097491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 22 nucleotide-long non-coding small RNAs (ncRNAs) play crucial roles in physiological and pathological activities, including microRNAs (miRNAs). Long ncRNAs often stay in the cytoplasm, modulating post-transcriptional gene expression. Briefly, miRNA binds with the target mRNA and builds a miRNA-induced silencing complex to silence the transcripts or prevent their translation. Interestingly, data from recent animal and plant studies suggested that mature miRNAs are present in the nucleus, where they regulate transcriptionally whether genes are activated or silenced. This significantly broadens the functional range of miRNAs. Here, we reviewed and summarized studies on the functions of nuclear miRNAs to better understand the modulatory networks associated with nuclear miRNAs.
Collapse
Affiliation(s)
- Xiaozhu Hu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Guoquan Yin
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Yuan Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Liangyu Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Haoyu Huang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| |
Collapse
|
7
|
Bosco G, Paganini M, Giacon TA, Oppio A, Vezzoli A, Dellanoce C, Moro T, Paoli A, Zanotti F, Zavan B, Balestra C, Mrakic-Sposta S. Oxidative Stress and Inflammation, MicroRNA, and Hemoglobin Variations after Administration of Oxygen at Different Pressures and Concentrations: A Randomized Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189755. [PMID: 34574676 PMCID: PMC8468581 DOI: 10.3390/ijerph18189755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Exercise generates reactive oxygen species (ROS), creating a redox imbalance towards oxidation when inadequately intense. Normobaric and hyperbaric oxygen (HBO) breathed while not exercising induces antioxidant enzymes expression, but literature is still poor. Twenty-two athletes were assigned to five groups: controls; 30%, or 50% O2; 100% O2 (HBO) at 1.5 or 2.5 atmosphere absolute (ATA). Twenty treatments were administered on non-training days. Biological samples were collected at T0 (baseline), T1 (end of treatments), and T2 (1 month after) to assess ROS, antioxidant capacity (TAC), lipid peroxidation, redox (amino-thiols) and inflammatory (IL-6, 10, TNF-α) status, renal function (i.e., neopterin), miRNA, and hemoglobin. At T1, O2 mixtures and HBO induced an increase of ROS, lipid peroxidation and decreased TAC, counterbalanced at T2. Furthermore, 50% O2 and HBO treatments determined a reduced state in T2. Neopterin concentration increased at T1 breathing 50% O2 and HBO at 2.5 ATA. The results suggest that 50% O2 treatment determined a reduced state in T2; HBO at 1.5 and 2.5 ATA similarly induced protective mechanisms against ROS, despite the latter could expose the body to higher ROS levels and neopterin concentrations. HBO resulted in increased Hb levels and contributed to immunomodulation by regulating interleukin and miRNA expression.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
- Correspondence: (G.B.); (M.P.)
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
- Correspondence: (G.B.); (M.P.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Alberto Oppio
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Federica Zanotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (B.Z.)
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (B.Z.)
| | - Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium;
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| |
Collapse
|