1
|
Festinese VG, Faydaver M, Nardinocchi D, Di Giacinto O, El Khatib M, Mauro A, Turriani M, Canciello A, Berardinelli P, Russo V, Barboni B. Neural Markers Predict Tendon Healing Outcomes in an Ovine Achilles Tendon Injury Model: Spontaneous Repair Versus Amniotic Epithelial Cell-Induced Regeneration. Int J Mol Sci 2025; 26:2445. [PMID: 40141090 PMCID: PMC11942428 DOI: 10.3390/ijms26062445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Tendon injuries pose a clinical challenge due to tendons' limited recovery. Emerging evidence points to the nervous system's critical role in tendon healing, with neural markers NGF, NF-200, NPY, CGRP, and GAL modulating inflammation, cell proliferation, and extracellular matrix (ECM) remodeling. This study investigates the predictive role of selected neural markers in a validated ovine Achilles tendon injury model, comparing spatio-temporal expression patterns in regenerating tendons transplanted with amniotic epithelial stem cells (AECs) versus spontaneous healing (CTR) 14 and 28 days post-injury (p.i.). AEC-treated tissues showed a spatio-temporal modulation of NF-200, NGF, NPY, CGRP, GAL, and enhanced ECM remodeling, with greater cell alignment, lower angle deviation, and accelerated collagen maturation, with a favorable Collagen type 1 (COL1) to Collagen type 3 (COL3) ratio. Pearson's matrix analysis revealed significant positive correlations between NGF, CGRP, and GAL expression, along a positive correlation between the three neural markers and cell alignment and angle deviation. As opposed to CTR, in AEC-treated tendons, lower levels of NGF, CGRP, and GAL correlated positively with improved tissue organization, suggesting these markers may predict successful tendon regeneration. The findings highlight the neuro-mediated activity of AECs in tendon regeneration, with NGF, CGRP, and GAL emerging as key predictive biomarkers for tendon healing.
Collapse
Affiliation(s)
- Valeria Giovanna Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
- School of Advanced Studies, Center for Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Delia Nardinocchi
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Angelo Canciello
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.G.F.); (M.F.); (O.D.G.); (M.E.K.); (A.M.); (M.T.); (A.C.)
| |
Collapse
|
2
|
Faydaver M, El Khatib M, Russo V, Rigamonti M, Raspa M, Di Giacinto O, Berardinelli P, Mauro A, Scavizzi F, Bonaventura F, Mastrorilli V, Valbonetti L, Barboni B. Unraveling the link: locomotor activity exerts a dual role in predicting Achilles tendon healing and boosting regeneration in mice. Front Vet Sci 2023; 10:1281040. [PMID: 38179329 PMCID: PMC10764449 DOI: 10.3389/fvets.2023.1281040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | | | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | - Fabrizio Bonaventura
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | | | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
4
|
Tendon 3D Scaffolds Establish a Tailored Microenvironment Instructing Paracrine Mediated Regenerative Amniotic Epithelial Stem Cells Potential. Biomedicines 2022; 10:biomedicines10102578. [PMID: 36289840 PMCID: PMC9599634 DOI: 10.3390/biomedicines10102578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue’s characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs’ immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.
Collapse
|
5
|
Russo V, El Khatib M, Prencipe G, Cerveró-Varona A, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022; 11:cells11020266. [PMID: 35053383 PMCID: PMC8773518 DOI: 10.3390/cells11020266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
- Correspondence:
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
6
|
Abstract
Tendinopathy refers to the clinical diagnosis of activity-related pain resulting in a decline in tendon function. In the last few years, much has been published concerning the basic science and clinical investigation of tendinopathy and debates and discussions to new questions and points of view started many years ago. This advances review will discuss the current thinking on the basic science and clinical management of tendinopathy and in particular new findings in the tendon repair space that are relevant to the pathophysiology of tendinopathy. We will further discuss potential novel therapies on the horizon in human tendon disease.
Collapse
Affiliation(s)
- Dimitris Challoumas
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Mairiosa Biddle
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
7
|
Barbe MF, Hilliard B, Fisher PW, White AR, Delany SP, Iannarone VJ, Harris MY, Amin M, Cruz GE, Popoff SN. Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res 2020; 61:604-619. [PMID: 31443618 PMCID: PMC7036028 DOI: 10.1080/03008207.2019.1653289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Substance P-NK-1R signaling has been implicated in fibrotic tendinopathies and myositis. Blocking this signaling with a neurokinin 1 receptor antagonist (NK1RA) has been proposed as a therapeutic target for their treatment.Materials and Methods: Using a rodent model of overuse injury, we pharmacologically blocked Substance P using a specific NK1RA with the hopes of reducing forelimb tendon, muscle and dermal fibrogenic changes and associated pain-related behaviors. Young adult rats learned to pull at high force levels across a 5-week period, before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated or treated in task weeks 2 and 3 with the NK1RA, i.p. Control rats received vehicle or NK1RA treatments.Results: Grip strength declined in untreated HRHF rats, and mechanical sensitivity and temperature aversion increased compared to controls; these changes were improved by NK1RA treatment (L-732,138). NK1RA treatment also reduced HRHF-induced thickening in flexor digitorum epitendons, and HRHF-induced increases of TGFbeta1, CCN2/CTGF, and collagen type 1 in flexor digitorum muscles. In the forepaw upper dermis, task-induced increases in collagen deposition were reduced by NK1RA treatment.Conclusions: Our findings indicate that Substance P plays a role in the development of fibrogenic responses and subsequent discomfort in forelimb tissues involved in performing a high demand repetitive forceful task.
Collapse
Affiliation(s)
- MF Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - B Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - PW Fisher
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - AR White
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SP Delany
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - VJ Iannarone
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - MY Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - M Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - GE Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SN Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| |
Collapse
|
8
|
El Khatib M, Mauro A, Di Mattia M, Wyrwa R, Schweder M, Ancora M, Lazzaro F, Berardinelli P, Valbonetti L, Di Giacinto O, Polci A, Cammà C, Schnabelrauch M, Barboni B, Russo V. Electrospun PLGA Fiber Diameter and Alignment of Tendon Biomimetic Fleece Potentiate Tenogenic Differentiation and Immunomodulatory Function of Amniotic Epithelial Stem Cells. Cells 2020; 9:cells9051207. [PMID: 32413998 PMCID: PMC7290802 DOI: 10.3390/cells9051207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
- Correspondence:
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Martina Schweder
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Andrea Polci
- Laboratory of Diagnosis and surveillance of foreign diseases, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy;
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| |
Collapse
|
9
|
Bittermann A, Gao S, Rezvani S, Li J, Sikes KJ, Sandy J, Wang V, Lee S, Holmes G, Lin J, Plaas A. Oral Ibuprofen Interferes with Cellular Healing Responses in a Murine Model of Achilles Tendinopathy. ACTA ACUST UNITED AC 2018; 4. [PMID: 30687812 PMCID: PMC6347402 DOI: 10.23937/2572-3243.1510049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The attempted healing of tendon after acute injury (overloading, partial tear or complete rupture) proceeds via the normal wound healing cascade involving hemostasis, inflammation, matrix synthesis and matrix remodeling. Depending on the degree of trauma and the nature of the post-injury milieu, a variable degree of healing and recovery of function occurs. Post-injury analgesia is often achieved with NSAIDs such as Ibuprofen, however there is increasing evidence that NSAID usage may interfere with the healing process. This study aimed to investigate the cellular mechanism by which IBU therapy might lead to a worsening of tendon pathology. Methods: We have examined the effect of oral Ibuprofen, on Achilles tendon healing in a TGFb1-induced murine tendinopathy model. Dosing was started 3 days after initial injury (acute cellular response phase) and continued for 22 days or started at 9 days after injury (transition to matrix regeneration phase) and given for 16 days. Cellular changes in tendon and surrounding peritenon were assessed using Hematoxylin/Eosin, chondroid accumulation with Safranin O and anti-aggrecan immunohistochemistry, and neo-vessel formation with GSI Lectin histochemistry. Markers of inflammation included histochemical localization of hyaluronan, immunohistochemistry of heavy chain 1 and TNFα-stimulated glycoprotein-6 (TSG6). Cell responses were further examined by RT-qPCR of 84 NFκB target genes and 84 wound healing genes. Biomechanical properties of tendons were evaluated by tensile testing. Results: At a clinically-relevant dosage, Ibuprofen prevented the process of remodeling/removal of the inflammatory matrix components, hyaluronan, HC1 and TSG6. Furthermore, the aberrant matrix remodeling was accompanied by activation at day 28 of genes (Col1a2, Col5a3, Plat, Ccl12, Itga4, Stat3, Vegfa, Mif, Col4a1, Rhoa, Relb, F8, Cxcl9, Lta, Ltb, Ccl12, Cdkn1a, Ccl22, Sele, Cd80), which were not activated at any time without the drug, and so appear most likely to be involved in the pathology. Of these, Vegfa, Col4a1, F8, Cxcl9 and Sele, have been shown to play a role in vascular remodeling, consistent with the appearance at 25 days of vasculogenic cell groups in the peritenon and fat pad stroma surrounding the Achilles of the drug-dosed mice. Tensile stiffness (p = 0.004) and elastic modulus (p = 0.012) were both decreased (relative to age-matched uninjured and non-dosed mice) in mice dosed with Ibuprofen from day 3 to day 25, whether injured or not. Conclusion: We conclude that the use of Ibuprofen for pain relief during inflammatory phases of tendinopathy, might interfere with the normal processes of extracellular matrix remodeling and cellular control of expression of inflammatory and wound healing genes. It is proposed that the known COX2-mediated anti-inflammatory effect of ibuprofen has detrimental effects on the turnover of a pro-inflammatory HA matrix produced in response to soft-tissue injury, thus preventing the switch to cellular responses associated with functional matrix remodeling and eventual healing.
Collapse
Affiliation(s)
- Adam Bittermann
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Orthopaedic Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Shuguang Gao
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Sabah Rezvani
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, USA
| | - John Sandy
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Vincent Wang
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Simon Lee
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - George Holmes
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Johnny Lin
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Anna Plaas
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| |
Collapse
|
10
|
Abstract
Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.
Collapse
|
11
|
Yan Z, Yin H, Nerlich M, Pfeifer CG, Docheva D. Boosting tendon repair: interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop 2018; 5:1. [PMID: 29330711 PMCID: PMC5768579 DOI: 10.1186/s40634-017-0117-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background Tendons are dense connective tissues and critical components for the integrity and function of the musculoskeletal system. Tendons connect bone to muscle and transmit forces on which locomotion entirely depends. Due to trauma, overuse and age-related degeneration, many people suffer from acute or chronic tendon injuries. Owing to their hypovascularity and hypocellularity, tendinopathies remain a substantial challenge for both clinicians and researchers. Surgical treatment includes suture or transplantation of autograft, allograft or xenograft, and these serve as the most common technique for rescuing tendon injuries. However, the therapeutic efficacies are limited by drawbacks including inevitable donor site morbidity, poor graft integration, adhesion formations and high rates of recurrent tearing. This review summarizes the literature of the past 10 y concerning scaffold-free and gel-based approaches for treating tendon injuries, with emphasis on specific advantages of such modes of application, as well as the obtained results regarding in vitro and in vivo tenogenesis. Results The search was focused on publications released after 2006 and 83 articles have been analysed. The main results are summarizing and discussing the clear advantages of scaffold-free and hydrogels carriers that can be functionalized with cells alone or in combination with growth factors. Conclusion The improved understanding of tissue resident adult stem cells has made a significant progress in recent years as well as strategies to steer their fate toward tendon lineage, with the help of growth factors, have been identified. The field of tendon tissue engineering is exploring diverse models spanning from hard scaffolds to gel-based and scaffold-free approaches seeking easier cell delivery and integration in the site of injury. Still, the field needs to consider a multifactorial approach that is based on the combination and fine-tuning of chemical and biomechanical stimuli. Taken together, tendon tissue engineering has now excellent foundations and enters the period of precision and translation to models with clinical relevance on which better treatment options of tendon injuries can be shaped up.
Collapse
Affiliation(s)
- Zexing Yan
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Heyong Yin
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Michael Nerlich
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian G Pfeifer
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany. .,Director of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Barboni B, Russo V, Gatta V, Bernabò N, Berardinelli P, Mauro A, Martelli A, Valbonetti L, Muttini A, Di Giacinto O, Turriani M, Silini A, Calabrese G, Abate M, Parolini O, Stuppia L, Mattioli M. Therapeutic potential of hAECs for early Achilles tendon defect repair through regeneration. J Tissue Eng Regen Med 2017; 12:e1594-e1608. [PMID: 29024514 DOI: 10.1002/term.2584] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/26/2022]
Abstract
Cell-based therapy holds great promise for tendon disorders, a widespread debilitating musculoskeletal condition. Even if the cell line remains to be defined, preliminary evidences have proven that amniotic-derived cells possess in vitro and in vivo a great tenogenic potential. This study investigated the efficacy of transplanted human amniotic epithelial cells (hAECs) by testing their early regenerative properties and mechanisms involved on a validated ovine Achilles tendon partial defect performed on 29 animals. The injured tendons treated with hAECs recovered rapidly, in 28 days, structural and biomechanical properties undertaking a programmed tissue regeneration, differently from the spontaneous healing tissues. hAECs remained viable within the host tendons establishing with the endogenous progenitor cells an active dialogue. Through the secretion of modulatory factors, hAECs inhibited the inflammatory cells infiltration, activated the M2 macrophage subpopulation early recruitment, and accelerated blood vessel as well as extracellular matrix remodelling. In parallel, some in situ differentiated hAECs displayed a tenocytelike phenotype. Both paracrine and direct hAECs stimulatory effects were confirmed analysing their genome profile before and after transplantation. The 49 human up-regulated transcripts recorded in transplanted hAECs belonged to tendon lineage differentiation (epithelial-mesenchymal transition, connective specific matrix components, and skeleton or muscle system development-related transcripts), as well as the in situ activation of paracrine signalling involved in inflammatory and immunomodulatory response. Altogether, these evidences support the hypothesis that hAECs are a practicable and efficient strategy for the acute treatment of tendinopathy, reinforcing the idea of a concrete use of amniotic epithelial cells towards the clinical practice.
Collapse
Affiliation(s)
- Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessandra Martelli
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aurelio Muttini
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonietta Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Giuseppe Calabrese
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Michele Abate
- Department of Medicine and Science of Aging, University "G. d'Annunzio" Chieti Pescara, Chieti, Italy
| | - Ornella Parolini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Liborio Stuppia
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Mauro Mattioli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
13
|
Degenerative Suspensory Ligament Desmitis (DSLD) in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts. PLoS One 2016; 11:e0167069. [PMID: 27902739 PMCID: PMC5130251 DOI: 10.1371/journal.pone.0167069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Equine degenerative suspensory ligament desmitis (DSLD) in Peruvian Paso horses typically presents at 7–15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding) we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs) from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05) in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1), SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2) represent master-regulators in a wide range of cellular metabolic responses.
Collapse
|