1
|
Bala A, Olejnik A, Gottman-Narożna A, Rejner W, Koczyk K, Dziedzic T, Kunert P. Deficits of Attention and Working Memory in Patients with Gliomas of Supplementary Motor Area. J Clin Med 2025; 14:1229. [PMID: 40004759 PMCID: PMC11856663 DOI: 10.3390/jcm14041229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: The effects of brain tumors located in the supplementary motor area (SMA) have so far been described mainly in the context of motor and speech disorders. There are few studies that have considered other cognitive domains, so this study aimed to fill this gap by focusing on examining attention and working memory in a population of patients with gliomas in the SMA region. Methods: This study included 50 patients diagnosed with gliomas located in the SMA who have not yet had any treatment and 57 demographically matched healthy individuals. A set of neuropsychological tests was conducted to assess attention and working memory: Digit Span from WAIS-R, Visual Elevator from TEA, Verbal Fluency Test (switching condition), and Color Trails Test (CTT). Results: The analyses showed that patients scored lower in most of the evaluated tests and indicators, namely in Digit Span-forward (t = -2.05; p = 0.022), Digit Span-backward (t = -2.63; p = 0.005), CTT-2 (t = 4.24; p = 0.001), CTT-interference (t = 2.31; p = 0.012), Visual Elevator-time (t = 1.83; p = 0.035), Visual Elevator-accuracy (t = -2.42, p = 0.010), and Verbal Fluency-switching (t = -3.41; p = 0.001). A significant relationship was also demonstrated between the grade of tumor malignancy and the results achieved in some of the neuropsychological tests. The lateralization of the tumor, the size of the lesion, and the presence of epilepsy did not prove to be particularly significant. Conclusions: Due to the significant decline in cognitive performance in terms of attention and working memory, we believe that every patient with a tumor in the SMA should undergo a detailed neuropsychological examination, which will profile their functioning and help tailor the best possible psychological care.
Collapse
Affiliation(s)
- Aleksandra Bala
- Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183 Warsaw, Poland; (A.O.); (W.R.)
| | - Agnieszka Olejnik
- Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183 Warsaw, Poland; (A.O.); (W.R.)
| | | | - Weronika Rejner
- Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183 Warsaw, Poland; (A.O.); (W.R.)
| | - Kacper Koczyk
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Tomasz Dziedzic
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Przemysław Kunert
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Jiménez de la Peña MDM, Gil-Robles S, Aracil C, Casado EA, Rubio Alonso M, Martínez de Vega V. Postoperative reorganization of the supplementary motor area complex: A possible latent bihemispheric network. Clin Neurol Neurosurg 2024; 246:108586. [PMID: 39378707 DOI: 10.1016/j.clineuro.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Brain plasticity after multistep surgery in low-grade glioma is highly variable; the neurosurgical approach must be individualised and functional imaging can be used for this purpose. In supplementary motor area complex (SMAC) tumors, the early and adequate functional recovery of patients raises the possibility of a latent bihemispheric or "mirror" cortico-subcortical network, which would develop depending on the needs of each patient. METHODS Functional and DTI-MR data from 4 right-handed patients with left frontal low grade gliomas near the SMAC, who were operated at least in two occasions were collected. The time of the reintervention was variable (18 months- 8 years), related to the tumor growth. All patients were evaluated by a neuropsychologist and imaged before each surgery, in a 3 T MR, with a 24 multichanel head coil Motor and expressive language task-fMRI and DTI sequences were obtained to evidence the main cortico-subcortical components of the SMAC. Data were processed with Brainwave (GE Medical Systems) and with an Iplan Fiber Tracking tool (MEDTRONIC), respectively RESULTS: None of our patients presented permanent neurological deficits after the first or second functional surgery. Three patients with partial or complete resection of the left middle and / or inferior frontal gyrus, and the left frontal aslant tract evidenced new right hemispherical cortical activity. This right shift were not observed in the patient without left middle gyrus resection, indeed with partial absent of the left frontal aslant tract. CONCLUSION SMAC is a latent cortico-subcortical bihemispheric network that allows it to reorganize itself in response to specific neurological deficits. We highlight the importance in the cortical reorganization of the left middle frontal gyrus in the SMAC, closely connected with the essential language areas of this region, but also we focused in the potential cortioco-subcortical changes to compensate the functionality of the FAT.
Collapse
Affiliation(s)
- María Del Mar Jiménez de la Peña
- Department of Diagnostic Imaging, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain.
| | - Santiago Gil-Robles
- Department of Neurosurgery, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| | - Cristina Aracil
- Department of Neurosurgery, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| | | | | | - Vicente Martínez de Vega
- Department of Diagnostic Imaging, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| |
Collapse
|
3
|
Saito T, Muragaki Y, Ro B, Tsuzuki S, Koriyama S, Masamune K, Horie N, Kawamata T. "Apathetic look" is a valuable indicator of intraoperative supplementary motor area syndrome during awake craniotomy. Neurosurg Rev 2024; 47:651. [PMID: 39304542 DOI: 10.1007/s10143-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Resection of a glioma from the dorsomedial frontal lobe, including the supplementary motor area (SMA), can result in postoperative SMA syndrome. SMA syndrome may occur during awake craniotomies. However, it is often difficult to intraoperatively distinguish between motor dysfunction due to pyramidal tract damage from that due to SMA syndrome. Patients with suspected intraoperative SMA syndrome are indifferent to their surroundings, have stiff facial muscles, and maintain a fixed gaze. We defined this condition as "apathetic look." The present study aimed to investigate whether intraoperative "apathetic look" is useful for identifying intraoperative SMA syndrome in patients with glioma close to motor-related areas, including the SMA, during awake craniotomy. This study included 33 consecutive patients with glioma included in the SMA. We excluded patients whose tumors extended to motor-related areas. We also assessed whether intraoperative SMA syndrome occurred in each patient. We evaluated the correlation between the occurrence of intraoperative SMA syndrome and various clinical factors, including intraoperative "apathetic look." Of the 33 patients, 12 had intraoperative SMA syndrome. Intraoperative "apathetic look" showed strong correlation with intraoperative SMA syndrome (p < 0.0001). Additionally, higher extent of resection (EOR) and resection of the corpus callosum showed a significantly higher incidence of intraoperative "apathetic look." All 12 patients with intraoperative SMA syndrome showed intraoperative "apathetic look" and recovered from SMA syndrome with high EOR. In conclusion, intraoperative "apathetic look" shows strong correlation with intraoperative SMA syndrome. Therefore, "apathetic look" may be a valuable indicator of intraoperative SMA syndrome during awake craniotomy.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan.
- Department of Neurosurgery, Hibino Hospital, Hiroshima, Japan.
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development (CAMED), Kobe University, Hyogo, Japan
| | - Bunto Ro
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan
| | - Ken Masamune
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo, 162-8666, Japan
| |
Collapse
|
4
|
Dziedzic TA, Bala A, Balasa A, Olejnik A, Marchel A. Cortical and white matter anatomy relevant for the lateral and superior approaches to resect intraaxial lesions within the frontal lobe. Sci Rep 2022; 12:21402. [PMID: 36496517 PMCID: PMC9741612 DOI: 10.1038/s41598-022-25375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Despite being associated with high-order neurocognitive functions, the frontal lobe plays an important role in core neurological functions, such as motor and language functions. The aim of this study was to present a neurosurgical perspective of the cortical and subcortical anatomy of the frontal lobe in terms of surgical treatment of intraaxial frontal lobe lesions. We also discuss the results of direct brain mapping when awake craniotomy is performed. Ten adult cerebral hemispheres were prepared for white matter dissection according to the Klingler technique. Intraaxial frontal lobe lesions are approached with a superior or lateral trajectory during awake conditions. The highly eloquent cortex within the frontal lobe is identified within the inferior frontal gyrus (IFG) and precentral gyrus. The trajectory of the approach is mainly related to the position of the lesion in relation to the arcuate fascicle/superior longitudinal fascicle complex and ventricular system. Knowledge of the cortical and subcortical anatomy and its function within the frontal lobe is essential for preoperative planning and predicting the risk of immediate and long-term postoperative deficits. This allows surgeons to properly set the extent of the resection and type of approach during preoperative planning.
Collapse
Affiliation(s)
- Tomasz Andrzej Dziedzic
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| | - Aleksandra Bala
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland ,grid.12847.380000 0004 1937 1290Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Artur Balasa
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| | - Agnieszka Olejnik
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland ,grid.12847.380000 0004 1937 1290Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| |
Collapse
|
5
|
Palmisciano P, Haider AS, Balasubramanian K, Dadario NB, Robertson FC, Silverstein JW, D'Amico RS. Supplementary Motor Area Syndrome after Brain Tumor Surgery: A Systematic Review. World Neurosurg 2022; 165:160-171.e2. [PMID: 35752423 DOI: 10.1016/j.wneu.2022.06.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Supplementary motor area syndrome (SMAS) may occur after frontal tumor surgery, with variable presentation and outcomes. We reviewed the literature on postoperative SMAS following brain tumor resection. METHODS PubMed, Web-of-Science, Scopus, and Cochrane were searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to include studies reporting SMAS after brain tumor resection. RESULTS We included 31 studies encompassing 236 patients. Most tumors were gliomas (94.5%), frequently of low-grade (61.4%). Most lesions were located on the left hemisphere (64.4%), involving the supplementary motor area (61.4%) and the cingulate gyrus (20.8%). Tractography and functional MRI evaluation were completed in 45 (19.1%) and 26 (11%) patients. Gross total resection was achieved in 46.3% cases and complete SMA resection in 69.4%. 215 procedures (91.1%) utilized intraoperative neuromonitoring mostly consisting of direct cortical/subcortical stimulation (56.4%), motor (33.9%), and somatosensory (25.4%) evoked potentials. Postoperative SMAS symptoms occurred within 24 hours after surgery, characterized by motor deficits (97%) including paresis (68.6%) and hemiplegia (16.1%), and speech disorders (53%) including hesitancy (24.2%) and mutism (22%). Average SMAS duration was 45 days (range, 1-365), with total resolution occurring in 188 patients (79.7%) and partial improvement in 46 (19.5%). 48 patients (20.3%) had persisting symptoms, mostly speech hesitancy (60.4%) and fine motor disorders (45.8%). CONCLUSION Postoperative SMAS may occur within the first 24 hours after mesial frontal tumor surgery. Preoperative mapping and intraoperative neuromonitoring may assist resection and predict outcomes. Neuroplasticity and interhemispheric connectivity play a major role in resolution.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Haider
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center
| | | | - Nicholas B Dadario
- Department of Neurological Surgery, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Faith C Robertson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin W Silverstein
- Department of Neurology, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA; Neuro Protective Solutions, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
6
|
Fang S, Li L, Weng S, Zhang Z, Fan X, Jiang T, Wang Y. Increasing nodal vulnerability and nodal efficiency implied recovery time prolonging in patients with supplementary motor area syndrome. Hum Brain Mapp 2022; 43:3958-3969. [PMID: 35507429 PMCID: PMC9374886 DOI: 10.1002/hbm.25896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Supplementary motor area (SMA) syndrome is a surgery‐related complication that commonly occurs after removing SMA glioma, and needs weeks to recover. However, susceptible factors of patients suffering from SMA syndrome remain unknown. Graphic theory was applied to reveal topological properties of sensorimotor network (SMN) by processing resting‐state functional magnetic resonance images in 66 patients with SMA gliomas. Patients were classified into SMA and non‐SMA groups based on whether they suffered from SMA syndrome. We collected recovery time and used causal mediation analysis to find association between topological properties and recovery time. Compared with the non‐SMA group, higher vulnerability (left: p = .0018; right: p = .0033) and lower fault tolerance (left: p = .0022; right: p = .0248) of the whole SMN were found in the SMA group. Moreover, higher nodal properties of lesional‐hemispheric cingulate cortex (nodal efficiency: left, p = .0389; right, p = .0169; nodal vulnerability: left, p = .0185; right, p = .0085) and upper limb region of primary motor cortex (PMC; nodal efficiency: left, p = .0132; right, p = .0001; nodal vulnerability: left, p = .0091; right, p = .0209) were found in the SMA group. Nodal efficiency and nodal vulnerability of cingulate cortex and upper limb region of PMC were important predictors for SMA syndrome occurring and recovery time prolonging. Neurosurgeons should carefully deal with upper limb region of PMC and cingulate cortex, and protect them if these two region were unnecessary to damage during SMA glioma resection.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shimeng Weng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Young JS, Gogos AJ, Aabedi AA, Morshed RA, Pereira MP, Lashof-Regas S, Mansoori Z, Luks T, Hervey-Jumper SL, Villanueva-Meyer JE, Berger MS. Resection of supplementary motor area gliomas: revisiting supplementary motor syndrome and the role of the frontal aslant tract. J Neurosurg 2022; 136:1278-1284. [PMID: 34598138 DOI: 10.3171/2021.4.jns21187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The supplementary motor area (SMA) is an eloquent region that is frequently a site for glioma, or the region is included in the resection trajectory to deeper lesions. Although the clinical relevance of SMA syndrome has been well described, it is still difficult to predict who will become symptomatic. The object of this study was to define which patients with SMA gliomas would go on to develop a postoperative SMA syndrome. METHODS The University of California, San Francisco, tumor registry was searched for patients who, between 2010 and 2019, had undergone resection for newly diagnosed supratentorial diffuse glioma (WHO grades II-IV) performed by the senior author and who had at least 3 months of follow-up. Pre- and postoperative MRI studies were reviewed to confirm the tumor was located in the SMA region, and the extent of SMA resection was determined by volumetric assessment. Patient, tumor, and outcome data were collected retrospectively from documents available in the electronic medical record. Tumors were registered to a standard brain atlas to create a frequency heatmap of tumor volumes and resection cavities. RESULTS During the study period, 56 patients (64.3% male, 35.7% female) underwent resection of a newly diagnosed glioma in the SMA region. Postoperatively, 60.7% developed an SMA syndrome. Although the volume of tumor within the SMA region did not correlate with the development of SMA syndrome, patients with the syndrome had larger resection cavities in the SMA region (25.4% vs 14.2% SMA resection, p = 0.039). The size of the resection cavity in the SMA region did not correlate with the severity of the SMA syndrome. Patients who developed the syndrome had cavities that were located more posteriorly in the SMA region and in the cingulate gyrus. When the frontal aslant tract (FAT) was preserved, 50% of patients developed the SMA syndrome postoperatively, whereas 100% of the patients with disruption of the FAT during surgery developed the SMA syndrome (p = 0.06). Patients with SMA syndrome had longer lengths of stay (5.6 vs 4.1 days, p = 0.027) and were more likely to be discharged to a rehabilitation facility (41.9% vs 0%, p < 0.001). There was no difference in overall survival for newly diagnosed glioblastoma patients with SMA syndrome compared to those without SMA syndrome (1.6 vs 3.0 years, p = 0.33). CONCLUSIONS For patients with SMA glioma, more extensive resections and resections involving the posterior SMA region and posterior cingulate gyrus increased the likelihood of a postoperative SMA syndrome. Although SMA syndrome occurred in all cases in which the FAT was resected, FAT preservation does not reliably avoid SMA syndrome postoperatively.
Collapse
Affiliation(s)
- Jacob S Young
- 1Department of Neurological Surgery, University of California, San Francisco
| | - Andrew J Gogos
- 1Department of Neurological Surgery, University of California, San Francisco
| | | | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco
| | | | | | - Ziba Mansoori
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tracy Luks
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | | | - Javier E Villanueva-Meyer
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
8
|
Kumar G K, Chigurupalli C, Balasubramaniam A, Rajesh BJ, Manohar N. Role of Asleep Surgery for Supplementary Motor Area Tumors. INDIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1055/s-0042-1743266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Background The supplementary motor area (SMA) is involved in planning of voluntary motor activities. Tumors in SMA usually present with seizures and, rarely, motor deficits. Postoperatively, these patients may develop SMA syndrome. Patients with SMA tumors usually undergo awake craniotomy along with neuromonitoring for maximal safe resection, and some of these patients tend to have residual tumor.
Objective To completely excise the SMA region tumors under general anesthesia without causing any permanent neurological deficits.
Methods We operated upon four patients with SMA region tumor under general anesthesia (GA) with direct electrocortical stimulation (DES). Motor-evoked potential was used to monitor corticospinal tracts through corkscrew or strip electrodes. Intraoperative MRI was done to assess the tumor excision.
Results All four patients had complete resection of tumor and, postoperatively, all four developed SMA syndrome. All of them recovered completely over a period of time.
Conclusion SMA tumors can be excised completely under GA with DES, thereby increasing progression-free survival.
Collapse
Affiliation(s)
- Krishna Kumar G
- Department of Neurosurgery, Yashoda hospitals, Secunderabad, Telangana, India
| | | | | | - BJ Rajesh
- Department of Neurosurgery, Yashoda hospitals, Secunderabad, Telangana, India
| | - Nitin Manohar
- Department of Neuroanesthesia, Yashoda hospitals, Secunderabad, Telangana, India
| |
Collapse
|
9
|
KAWATA M, FUKUI A, MINEHARU Y, KIKUCHI T, YAMAO Y, YAMAMOTO HATTORI E, SHIRAKI A, MIZOTA T, FURUKAWA K, MIYAMOTO S, YONEZAWA A, ARAKAWA Y. A Nationwide Questionnaire Survey on Awake Craniotomy in Japan. Neurol Med Chir (Tokyo) 2022; 62:278-285. [PMID: 35354712 PMCID: PMC9259085 DOI: 10.2176/jns-nmc.2021-0290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The number of awake craniotomies is increasing because of its beneficial features. However, not enough information is available regarding the current status of awake craniotomy in Japan. To evaluate the current status of awake craniotomy in institutes, a nationwide questionnaire survey was conducted. From June to August 2019, we conducted a questionnaire survey on awake craniotomy in the neurosurgery department of 45 institutes that perform awake craniotomies in Japan. Responses were obtained from 39 institutes (response rate, 86.7%). The main methods of awake craniotomy were almost the same in all institutes. Twenty-six institutes (66.7%) had fewer than 10 awake craniotomies (low-volume institutes) per year, and 13 high-volume institutes (33.3%) performed more than 10 awake craniotomies annually. Some institutes experienced a relatively high frequency of adverse events. In 11 institutes (28.2%), the frequency of intraoperative seizures was more than 10%. An intraoperative seizure frequency of 1%-9%, 10%-29%, and over 30% was identified in 12 (92%), 0 (0%), and 1 (8%) of the high-volume institutes, which was significantly less than in 16 (62%), 10 (38%), and 0 (0%) of the low-volume institutes (p = 0.0059). The routine usage of preoperative antiepileptic drugs was not different between them, but the old type was used more often in the low-volume institutes (p = 0.0022). Taken together, the annual number of awake craniotomies was less than 10 in over two-thirds of the institutes. Fewer intraoperative seizures were reported in the high-volume institutes, which tend not to preoperatively use the old type of antiepileptic drugs.
Collapse
Affiliation(s)
- Masayoshi KAWATA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Ayaka FUKUI
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Yohei MINEHARU
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Takayuki KIKUCHI
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Yukihiro YAMAO
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | - Atsuko SHIRAKI
- Department of Anesthesia, Kyoto University Graduate School of Medicine
| | - Toshiyuki MIZOTA
- Department of Anesthesia, Kyoto University Graduate School of Medicine
| | | | - Susumu MIYAMOTO
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Atsushi YONEZAWA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Yoshiki ARAKAWA
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| |
Collapse
|
10
|
Dadario NB, Tabor JK, Silverstein J, Sun XR, DAmico RS. Postoperative Focal Lower Extremity Supplementary Motor Area Syndrome: Case Report and Review of the Literature. Neurodiagn J 2021; 61:169-185. [PMID: 34781833 DOI: 10.1080/21646821.2021.1991716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Supplementary motor area (SMA) syndrome refers to varying degrees of transient hemiparesis and mutism following insult to the medial posterior frontal lobe. We describe a rare case of an isolated lower limb SMA deficit with associated pre- and post-operative multimodality neurophysiological monitoring data. We review the literature on SMA somatotopy and the prognostic abilities of intraoperative motor evoked potentials in suspected SMA dysfunction. A 45-year-old male underwent staged resection of a complex parasagittal WHO grade II meningioma involving the posterior superior frontal gyrus bilaterally. Intraoperative neurophysiological monitoring with transcranial motor evoked potentials (TCMEP) and direct cortical motor evoked potentials (DCMEP) were used during both stages of resection. The patient developed an isolated left foot drop despite unchanged DCMEP and TCMEP data obtained during the first stage of the procedure. During the second stage of resection 3 days later, repeat neurophysiological monitoring confirmed intact corticospinal tracts. Deep peroneal somatosensory evoked potentials (SSEPs) revealed good morphology, appropriate latency and amplitudes during the second stage of resection. These results suggested a diagnosis of focal SMA dysfunction. Left foot drop persisted 7 days post-operatively. At one month follow up, the patient was neurologically intact with full strength noted in all muscle groups of the left lower extremity. An improved understanding of the somatotopic organization of the SMA with additional neuromonitoring data can allow neurosurgeons to better predict and understand perioperative SMA dysfunctions.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Joanna K Tabor
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Justin Silverstein
- Department of Neurology Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra New York, New York.,Clinical Neurophysiology, Neuro Protective Solutions, New York, New York
| | - Xiaonan R Sun
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Randy S DAmico
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| |
Collapse
|
11
|
Intraoperative Electrophysiologic Mapping of Medial Frontal Motor Areas and Functional Outcomes. World Neurosurg 2020; 138:e389-e404. [DOI: 10.1016/j.wneu.2020.02.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
|
12
|
Sevoflurane versus PRopofol combined with Remifentanil anesthesia Impact on postoperative Neurologic function in supratentorial Gliomas (SPRING): protocol for a randomized controlled trial. BMC Anesthesiol 2020; 20:117. [PMID: 32429839 PMCID: PMC7236146 DOI: 10.1186/s12871-020-01035-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/10/2020] [Indexed: 12/05/2022] Open
Abstract
Background Patients with intracranial tumors are more sensitive to anesthetics than the general population and are therefore more susceptible to postoperative neurologic and neurocognitive dysfunction. Sevoflurane or propofol combined with remifentanil are widely used general anesthetic regimens for craniotomy, with neither regimen shown to be superior to the other in terms of neuroprotective efficacy and anesthesia quality. There is no evidence regarding the variable effects on postoperative neurologic and neurocognitive functional outcome under these two general anesthetic regimens. This trial will compare inhalational sevoflurane or intravenous propofol combined with remifentanil anesthesia in patients with supratentorial gliomas and test the hypothesis that postoperative neurologic function is equally affected between the two regimens. Methods This is a prospective, single-center, randomized parallel arm equivalent clinical trial, which is approved by China Ethics Committee of Registering Clinical Trials (ChiECRCT-20,160,051). Patients with supratentorial gliomas diagnosed by magnetic resonance imaging will be eligible for the trial. Written informed consent will be obtained before randomly assigning each subject to either the sevoflurane-remifentanil or propofol-remifentanil group for anesthesia maintenance to achieve an equal-desired depth of anesthesia. Intraoperative intervention and monitoring will follow a standard anesthetic management protocol. All of the physiological parameters and other medications administered during the intervention will be recorded. The primary outcome will be neurologic function change assessed by National Institute of Health Stroke Scale (NIHSS) within 4 h after general anesthesia when observer’s assessment of alertness/sedation (OAA/S) reaches 4. Secondary outcomes will include NIHSS and modified NIHSS change 1 and 2 days after general anesthesia, hemodynamic stability, intraoperative brain relaxation, quality of anesthesia emergence, quality of anesthesia recovery, postoperative cognitive function, postoperative pain, postoperative neurologic complications, as well as perioperative medical expense. Discussion This randomized equivalency trial will primarily compare the impacts of sevoflurane-remifentanil and propofol-remifentanil anesthesia on short-term postoperative neurologic function in patients with supratentorial gliomas undergoing craniotomy. The exclusion criteria are strict to ensure that the groups are comparable in all aspects. Repeated and routine neurologic evaluations after operation are always important to evaluate neurosurgical patients’ recovery and any newly presenting complications. The results of this trial would help specifically to interpret anesthetic residual effects on postoperative outcomes, and perhaps would help the anesthesiologist to select the optimal anesthetic regimen to minimize its impact on neurologic function in this specific patient population. Trial registration The study was registered and approved by the Chinese Clinical Trial Registry (Chinese Clinical Trial Registry, ChiCTR-IOR-16009177). Principle investigator: Nan Lin (email address: linnan127@gmail.com) and Ruquan Han (email address: hanrq666@aliyun.com) Date of Registration: September 8th, 2016. Country of recruitment: China.
Collapse
|
13
|
Application of Navigated Transcranial Magnetic Stimulation to Map the Supplementary Motor Area in Healthy Subjects. J Clin Neurophysiol 2020; 37:140-149. [DOI: 10.1097/wnp.0000000000000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Nakajima R, Kinoshita M, Yahata T, Nakada M. Recovery time from supplementary motor area syndrome: relationship to postoperative day 7 paralysis and damage of the cingulum. J Neurosurg 2020; 132:865-874. [PMID: 30738403 DOI: 10.3171/2018.10.jns182391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Supplementary motor area (SMA) syndrome is defined as temporary paralysis after the resection of brain tumor localized in the SMA. Although in most cases paralysis induced by SMA resection resolves within a short period, the time until complete recovery varies and has not been precisely analyzed to date. In this study, the authors investigated factors for predicting the time required for recovery from paralysis after SMA resection. METHODS Data from 20 cases were analyzed. All 20 patients (mean age 54.9 ± 12.6 years) had undergone resection of frontal lobe glioma involving the SMA. The severity of postoperative paralysis was recorded until complete recovery using the Brunnstrom recovery stage index. To investigate factors associated with recovery time, the authors performed multivariate analysis with the following potentially explanatory variables: age, severity of paralysis after the surgery, resected volume of the SMA, and probability of disconnection of fibers running through or near the SMA. Moreover, voxel-based lesion symptom analysis was performed to clarify the resected regions related to prolonged recovery. RESULTS In most cases of severe to moderate paralysis, there was substantial improvement within the 1st postoperative week, but 2-9 weeks were required for complete recovery. Significantly delayed recovery from paralysis was associated with resection of the cingulate cortex and its deep regions. The factors found to influence recovery time from paralysis were stage of paralysis at postoperative day 7 and disconnection probability of the cingulum (adjusted R2 = 0.63, p < 0.0001). CONCLUSIONS Recovery time from paralysis due to SMA syndrome can be predicted by the severity of paralysis at postoperative day 7 and degree of damage to the cingulum.
Collapse
Affiliation(s)
- Riho Nakajima
- 1Department of Occupational therapy, Faculty of Health Sciences
| | - Masashi Kinoshita
- 2Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University; and
| | - Tetsutaro Yahata
- 3Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- 2Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University; and
| |
Collapse
|
15
|
Postoperative isolated lower extremity supplementary motor area syndrome: case report and review of the literature. Childs Nerv Syst 2020; 36:189-195. [PMID: 31705188 DOI: 10.1007/s00381-019-04362-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022]
Abstract
The supplementary motor area (SMA) syndrome is characterized by transient weakness and akinesia contralateral to the side of the affected hemisphere. The underlying pathology of the syndrome is not fully understood but is thought to be related to lesions in the SMA, residing principally in the mesial superior frontal gyrus (Broadmann's area 6c). Although the SMA syndrome a well-characterized clinical entity, we report herein, to our knowledge, the first case of isolated lower extremity SMA syndrome in the literature. This case highlights the importance of considering this rare clinical entity in the context of new or worsening postoperative neurologic deficits. Moreover, early studies did not support somatotopic organization of the SMA as in the primary motor cortex; emerging evidence suggests that delicate somatotopic representation may underlie distinct presentations like that reported in the present case.
Collapse
|
16
|
Navigated transcranial magnetic stimulation of the supplementary motor cortex disrupts fine motor skills in healthy adults. Sci Rep 2019; 9:17744. [PMID: 31780823 PMCID: PMC6883055 DOI: 10.1038/s41598-019-54302-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) over the supplementary motor area (SMA) may impact fine motor skills. This study evaluates different nTMS parameters in their capacity to affect fine motor performance on the way to develop an SMA mapping protocol. Twenty healthy volunteers performed a variety of fine motor tests during baseline and nTMS to the SMA using 5 Hz, 10 Hz, and theta-burst stimulation (TBS). Effects on performance were measured by test completion times (TCTs), standard deviation of inter-tap interval (SDIT), and visible coordination problems (VCPs). The predominant stimulation effect was slowing of TCTs, i.e. a slowdown of test performances during stimulation. Furthermore, participants exhibited VCPs like accidental use of contralateral limbs or inability to coordinate movements. More instances of significant differences between baseline and stimulation occurred during stimulation of the right hemisphere compared to left-hemispheric stimulation. In conclusion, nTMS to the SMA could enable new approaches in neuroscience and enable structured mapping approaches. Specifically, this study supports interhemispheric differences in motor control as right-hemispheric stimulation resulted in clearer impairments. The application of our nTMS-based setup to assess the function of the SMA should be applied in patients with changed anatomo-functional representations as the next step, e.g. among patients with eloquent brain tumors.
Collapse
|
17
|
Nakajima R, Kinoshita M, Okita H, Yahata T, Nakada M. Glioma surgery under awake condition can lead to good independence and functional outcome excluding deep sensation and visuospatial cognition. Neurooncol Pract 2018; 6:354-363. [PMID: 31555450 DOI: 10.1093/nop/npy054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Awake surgery for the eloquent cortex is a common strategy for glioma surgery. Although a recent emphasis has been placed on awake surgery both for dominant and nondominant cerebral hemispheres to preserve neurological/neuropsychological functions, those functional outcomes are not well investigated because few studies have focused on the longitudinal recovery process. This study explored the outcome of neurological/neuropsychological functions following awake surgery until the chronic phase. Methods A total of 87 patients with glioma who underwent awake surgery were included, and of these 66 patients matched our inclusion criteria. Each patient was assessed for neurological/neuropsychological functions before surgery, as well as acute and chronic phase. Additionally, scores for the KPS were collected. Results Almost all functions recovered within 3 months postoperatively, even when transient deficits were observed in the acute phase; however, deep sensory perception deficits and visuospatial cognitive disorders persisted into the chronic phase (15.4% of patients with parietal lesions, 14.3% of patients with right cerebral hemispheric lesion, respectively). KPS score ≥90 was achieved in 86.0% of patients with lower-grade glioma, whereas only 52.2% of glioblastoma patients scored ≥90. Primary causes of declined KPS were disorder of visuospatial cognition, sensorimotor function including deep sensation, aphasia, and emotional function. Conclusions Awake surgery leads to good functional outcome at the chronic phase of neurological/neuropsychological functions, except for deep sensory and visuospatial cognition. Because sensation and visuospatial cognitive disorder have major impacts on patients' independence level, further importance should be placed on preserving these functions during surgery.
Collapse
Affiliation(s)
- Riho Nakajima
- Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | | | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Japan
| | - Tetsutaro Yahata
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Japan
| | | |
Collapse
|
18
|
Cañas A, Juncadella M, Lau R, Gabarrós A, Hernández M. Working Memory Deficits After Lesions Involving the Supplementary Motor Area. Front Psychol 2018; 9:765. [PMID: 29875717 PMCID: PMC5974158 DOI: 10.3389/fpsyg.2018.00765] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
The Supplementary Motor Area (SMA)—located in the superior and medial aspects of the superior frontal gyrus—is a preferential site of certain brain tumors and arteriovenous malformations, which often provoke the so-called SMA syndrome. The bulk of the literature studying this syndrome has focused on two of its most apparent symptoms: contralateral motor and speech deficits. Surprisingly, little attention has been given to working memory (WM) even though neuroimaging studies have implicated the SMA in this cognitive process. Given its relevance for higher-order functions, our main goal was to examine whether WM is compromised in SMA lesions. We also asked whether WM deficits might be reducible to processing speed (PS) difficulties. Given the connectivity of the SMA with prefrontal regions related to executive control (EC), as a secondary goal we examined whether SMA lesions also hampered EC. To this end, we tested 12 patients with lesions involving the left (i.e., the dominant) SMA. We also tested 12 healthy controls matched with patients for socio-demographic variables. To ensure that the results of this study can be easily transferred and implemented in clinical practice, we used widely-known clinical neuropsychological tests: WM and PS were measured with their respective Wechsler Adult Intelligence Scale indexes, and EC was tested with phonemic and semantic verbal fluency tasks. Non-parametric statistical methods revealed that patients showed deficits in the executive component of WM: they were able to sustain information temporarily but not to mentally manipulate this information. Such WM deficits were not subject to patients' marginal PS impairment. Patients also showed reduced phonemic fluency, which disappeared after controlling for the influence of WM. This observation suggests that SMA damage does not seem to affect cognitive processes engaged by verbal fluency other than WM. In conclusion, WM impairment needs to be considered as part of the SMA syndrome. These findings represent the first evidence about the cognitive consequences (other than language) of damage to the SMA. Further research is needed to establish a more specific profile of WM impairment in SMA patients and determine the consequences of SMA damage for other cognitive functions.
Collapse
Affiliation(s)
- Alba Cañas
- Department of Neurology, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Montserrat Juncadella
- Department of Neurology, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Ruth Lau
- Department of Neurosurgery, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Andreu Gabarrós
- Department of Neurosurgery, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain.,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet de Llobregat, Spain
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet de Llobregat, Spain.,Section of Cognitive Processes, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Basque Center on Cognition, Brain and Language, Donostia, Spain
| |
Collapse
|
19
|
Baker CM, Burks JD, Briggs RG, Smitherman AD, Glenn CA, Conner AK, Wu DH, Sughrue ME. The crossed frontal aslant tract: A possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav 2018; 8:e00926. [PMID: 29541539 PMCID: PMC5840439 DOI: 10.1002/brb3.926] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Supplementary motor area (SMA) syndrome is a constellation of temporary symptoms that may occur following tumors of the frontal lobe. Affected patients develop akinesia and mutism but often recover within weeks to months. With our own case examples and with correlations to fiber tracking validated by gross anatomical dissection as ground truth, we describe a white matter pathway through which recovery may occur. METHODS Diffusion spectrum imaging from the Human Connectome Project was used for tractography analysis. SMA outflow tracts were mapped in both hemispheres using a predefined seeding region. Postmortem dissections of 10 cadaveric brains were performed using a modified Klingler technique to verify the tractography results. RESULTS Two cases were identified in our clinical records in which patients sustained permanent SMA syndrome after complete disconnection of the SMA and corpus callosum (CC). After investigating the postoperative anatomy of these resections, we identified a pattern of nonhomologous connections through the CC connecting the premotor area to the contralateral premotor and SMAs. The transcallosal fibers have projections from the previously described frontal aslant tract (FAT) and thus, we have termed this path the "crossed FAT." CONCLUSIONS We hypothesize that this newly described tract may facilitate recovery from SMA syndrome by maintaining interhemispheric connectivity through the supplementary motor and premotor areas.
Collapse
Affiliation(s)
- Cordell M Baker
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Joshua D Burks
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Robert G Briggs
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Adam D Smitherman
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Chad A Glenn
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Andrew K Conner
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Dee H Wu
- Department of Radiological Sciences University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Michael E Sughrue
- Department of Neurosurgery University of Oklahoma Health Sciences Center Oklahoma City OK USA
| |
Collapse
|
20
|
Damage of the right dorsal superior longitudinal fascicle by awake surgery for glioma causes persistent visuospatial dysfunction. Sci Rep 2017; 7:17158. [PMID: 29215071 PMCID: PMC5719443 DOI: 10.1038/s41598-017-17461-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with glioma frequently present with neuropsychological deficits preoperatively and/or postoperatively, and these deficits may remain after the chronic phase. However, little is known about postoperative recovery course of right hemispheric function. We therefore studied the characteristics and causes of persistent cognitive dysfunction in right cerebral hemispheric glioma. Eighteen patients who underwent awake surgery participated in this study. All patients who received preoperative neuropsychological examinations were assigned to two groups according to their test results: preoperative deficit and normal. They were reassessed 1 week and 3 months after surgery. The rates of remaining deficits in the deficit group at chronic phase were higher than those of the normal group for all functions. Despite preoperative normal function, the remaining rate for visuospatial cognitive deficits was the highest among all functions. The voxel-based lesion-symptom mapping analysis for visuospatial cognition revealed that a part of the medial superior and middle frontal gyri were resected with high probability in patients with low visuospatial cognitive accuracy. Our study indicates that in patients with preoperative neuropsychological deficits, these deficits tend to remain until the chronic phase. Visuospatial dysfunction frequently persists until the chronic phase, which might reflect damage to the superior longitudinal fasciclus I and II.
Collapse
|
21
|
|