1
|
Saez-Aguayo S, Sanhueza D, Jara V, Galleguillos B, de la Rubia AG, Largo-Gosens A, Moreno A. Mucilicious methods: Navigating the tools developed to Arabidopsis Seed Coat Mucilage analysis. Cell Surf 2025; 13:100134. [PMID: 39758276 PMCID: PMC11696855 DOI: 10.1016/j.tcsw.2024.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
During the last decades, Arabidopsis seed mucilage has been extensively studied to gain insight into the metabolism of pectin, hemicellulose and cellulose. This review aims to provide a comprehensive examination of the techniques used to understand the composition and structure of Arabidopsis mucilage. Moreover, we present novel findings from mucilage analysis, including the separation of pectic domains within the mucilage, offering a fresh perspective on utilizing traditional techniques to analyze mucilage mutant lines.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
- ANID- Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
- ANID- Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Vicente Jara
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Benjamin Galleguillos
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
- Área de Fisiología Vegetal, Universidad de León, 24071, León, España, Spain
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| |
Collapse
|
2
|
Dierschke T, Levins J, Lampugnani ER, Ebert B, Zachgo S, Bowman JL. Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Curr Biol 2024; 34:5213-5222.e5. [PMID: 39447574 DOI: 10.1016/j.cub.2024.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Land plants evolved from an ancestral alga around 470 mya, evolving complex multicellularity in both haploid gametophyte and diploid sporophyte generations. The evolution of water-conducting tissues in the sporophyte generation was crucial for the success of land plants, paving the way for the colonization of a variety of terrestrial habitats. Class II KNOX (KNOX2) genes are major regulators of secondary cell wall formation and seed mucilage (pectin) deposition in flowering plants. Here, we show that, in the liverwort Marchantia polymorpha, loss-of-function alleles of the KNOX2 ortholog, MpKNOX2, or its dimerization partner, MpBELL1, have defects in capsule wall secondary cell wall and spore pectin biosynthesis. Both genes are expressed in the gametophytic calyptra surrounding the sporophyte and exert maternal effects, suggesting intergenerational regulation from the maternal gametophyte to the sporophytic embryo. These findings also suggest the presence of a secondary wall genetic program in the non-vascular liverwort capsule wall, with attributes of secondary walls in vascular tissues.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia; Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; School of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, 49076 Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Verma A, Kaur L, Kaur N, Bhardwaj A, Pandey AK, Kandoth PK. Genome editing of an oxalyl-CoA synthetase gene in Lathyrus sativus reveals its role in oxalate metabolism. PLANT CELL REPORTS 2024; 43:280. [PMID: 39538000 DOI: 10.1007/s00299-024-03368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Established an Agrobacterium-mediated hairy root transformation system for gene function analysis in Lathyrus sativus. Arabidopsis mutant complementation and genome editing in Lathyrus confirmed role of LsOCS in the oxalate metabolism. Grass pea (Lathyrus sativus) is a resilient legume cultivated for its protein-rich seeds and fodder. However, the presence of a naturally occurring neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which causes neurolathyrism, limits its extensive cultivation. This paper reports the in-planta characterization of oxalyl-CoA synthetase (OCS), an enzyme involved in oxalate metabolism and important in the oxalylating step leading to β-ODAP production in Lathyrus. For this, we used complementation experiments in an Arabidopsis OCS mutant. The LsOCS-complemented lines showed oxalate content similar to wild-type levels, and the analysis of seeds by field emission scanning electron microscope (FESEM) showed that the LsOCS-complemented lines were rescued from seed-coat defects found in the mutant seeds. We used genome editing of LsOCS in Lathyrus hairy roots to further characterize LsOCS function. The mutations in LsOCS resulted in the accumulation of oxalate in the hairy roots of Lathyrus, as observed in Arabidopsis mutants, but did not affect the ODAP levels. The hairy root genome editing system could serve as a rapid tool for functional studies of Lathyrus genes and optimizing the agronomic traits.
Collapse
Affiliation(s)
- Anjali Verma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Lovenpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- University of New Brunswick, Frederickton, Canada
| | - Akanksha Bhardwaj
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Ajay K Pandey
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Pramod Kaitheri Kandoth
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
- Central University of Kerala, Periye, Kasaragod, Kerala, India.
| |
Collapse
|
4
|
Emonet A, Pérez-Antón M, Neumann U, Dunemann S, Huettel B, Koller R, Hay A. Amphicarpic development in Cardamine chenopodiifolia. THE NEW PHYTOLOGIST 2024; 244:1041-1056. [PMID: 39030843 DOI: 10.1111/nph.19965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Amphicarpy is an unusual trait where two fruit types develop on the same plant: one above and the other belowground. This trait is not found in conventional model species. Therefore, its development and molecular genetics remain under-studied. Here, we establish the allooctoploid Cardamine chenopodiifolia as an emerging experimental system to study amphicarpy. We characterized C. chenopodiifolia development, focusing on differences in morphology and cell wall histochemistry between above- and belowground fruit. We generated a reference transcriptome with PacBio full-length transcript sequencing and analysed differential gene expression between above- and belowground fruit valves. Cardamine chenopodiifolia has two contrasting modes of seed dispersal. The main shoot fails to bolt and initiates floral primordia that grow underground where they self-pollinate and set seed. By contrast, axillary shoots bolt and develop exploding seed pods aboveground. Morphological differences between aerial explosive fruit and subterranean nonexplosive fruit were reflected in a large number of differentially regulated genes involved in photosynthesis, secondary cell wall formation and defence responses. Tools established in C. chenopodiifolia, such as a reference transcriptome, draft genome assembly and stable plant transformation, pave the way to study amphicarpy and trait evolution via allopolyploidy.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| | - Miguel Pérez-Antón
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| | - Sonja Dunemann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| | - Robert Koller
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Wilhelm-Johnen-Street, Jülich, 52425, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany
| |
Collapse
|
5
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Cummings EE, Schulze WX, Comer JR, Schrick K. Nuclear localization of Arabidopsis HD-Zip IV transcription factor GLABRA2 is driven by importin α. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6441-6461. [PMID: 39058342 DOI: 10.1093/jxb/erae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.
Collapse
Affiliation(s)
- Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Audra L Weber
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Emily E Cummings
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Jeffrey R Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Ladwig LM, Lucas JR. Seed mucilage in temperate grassland species is unrelated to moisture requirements. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10135. [PMID: 38384946 PMCID: PMC10880130 DOI: 10.1002/pei3.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
Myxospermy, the release of seed mucilage upon hydration, plays multiple roles in seed biology. Here, we explore whether seed mucilage occurs in a suite of temperate grassland species to test if the prevalence of species producing seed mucilage is associated with habitat type or seed characteristics. Seventy plant species found in wet or dry North American temperate grasslands were tested for the presence of seed mucilage through microscopic examination of seeds imbibed with histochemical stain for mucilage. Mucilage production was compared among species with different moisture requirements and seed mass. In this study, 43 of 70 of species tested produced seed mucilage. Seed mucilage did not differ based on habitat type, species moisture requirements, or seed mass. Most seed mucilage was non-adherent and did not remain stuck to the seed after extrusion. Seed mucilage was a common trait in the surveyed temperate grassland species and was observed in 61% of evaluated species. Surprisingly, seed mucilage was more common in temperate grasslands than in previous ecological surveys from arid/semiarid systems, which found 10%-31% myxospermous species. Given the high prevalence, seed mucilage may influence seedling ecology in temperate grasslands and requires further investigation.
Collapse
Affiliation(s)
- Laura M. Ladwig
- Biology DepartmentUniversity of WisconsinOshkoshWisconsinUSA
| | | |
Collapse
|
7
|
Mukherjee T, Subedi B, Khosla A, Begler EM, Stephens PM, Warner AL, Lerma-Reyes R, Thompson KA, Gunewardena S, Schrick K. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. PLANT PHYSIOLOGY 2022; 190:2315-2334. [PMID: 35984304 PMCID: PMC9706451 DOI: 10.1093/plphys/kiac383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding HD in conjunction with a lipid-binding domain termed steroidogenic acute regulatory-related lipid transfer (START). Previous work established that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis (Arabidopsis thaliana), is required for TF activity. Here, we addressed the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) resulted in phenotypic defects in leaf trichomes, root hairs, and seed mucilage, similar to those observed for START domain mutants, despite nuclear localization of the respective proteins. In vitro and in vivo experiments demonstrated that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, protein interaction assays revealed impaired GL2 dimerization for multiple alleles of START mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provided evidence for the role of START, but not HD, in maintaining protein stability. This work advances our mechanistic understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Donald Danforth Plant Science Center, Olivette, Missouri 63132, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Erika M Begler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Preston M Stephens
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adara L Warner
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Interdepartmental Genetics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
8
|
An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2). Sci Rep 2021; 11:16029. [PMID: 34362964 PMCID: PMC8346544 DOI: 10.1038/s41598-021-95310-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Anopheline larvicidal property of T. asperellum has been found recently in medical science. The mechanism of actions exhibited by T. asperellum to infect mosquito larvae is the pivotal context of our present study. To infect an insect, entomopathogens must undergo some events of pathogenesis. We performed some experiments to find out the mechanisms of action of T. asperellum against anopheline larvae and compared its actions with other two well recognized entomopathogens like Metarhizium anisopliae and Beauveria bassiana. The methodology adopted for this includes Compound light and SE Microscopic study of host-pathogen interaction, detection of fungal spore adhesion on larval surface (Mucilage assay), detection of cuticle degrading enzymes (Spore bound pr1, chitinase and protease) by spectro-photometric method, Quantitative estimation of chitinase and protease enzymes, and determination of nuclear degeneration of hemocyte cells of ME (methanolic extract) treated larvae by T. asperellum under fluorescence microscope. Compound light microscopic studies showed spore attachment, appressorium and germ tube formation, invasion and proliferated hyphal growth of T. asperellum on epicuticle and inside of dead larvae. SEM study also supported them. After 3 h of interaction, spores were found to be attached on larval surface exhibiting pink colored outer layer at the site of attachment indicating the presence of mucilage surrounding the attached spores. The enzymatic cleavage of the 4-nitroanilide substrate yields 4-nitroaniline which indicates the presence of spore-bound PR1 protein (Pathogenecity Related 1 Protein) and it was highest (absorbance 1.298 ± 0.002) for T. asperellum in comparison with control and other two entomopathogens. T. asperellum exhibited highest enzymatic index values for both chitinase (5.20) and protease (2.77) among three entomopathogens. Quantitative experiment showed that chitinase enzyme concentration of T. asperellum (245 µg mL-1) was better than other two M. anisopliae (134.59 µg mL-1) and B. bassiana (128.65 µg mL-1). Similarly protease enzyme concentration of this fungus was best (298.652 µg mL-1) among three entomopathogens. Here we have detected and estimated fragmentized nuclei of hemocyte cells by fluorescence microscopy in treated larvae with different ME doses of T. asperellum, and also observed that mosquito larvae exposed to 0.1 mg mL-1 dose of ME showed maximum (100%) nuclear fragmentations of hemocytes and while 20, 45, 70 and 85% of nuclear deformities were recorded at 0.02, 0.04, 0.06 and 0.08 mg mL-1 concentrations of ME. The knowledge of this work certainly will help in understanding of mechanism of action of T. asperellum for anopheline larval killing and consequently in eradication of malaria vector.
Collapse
|
9
|
Wachananawat B, Kuroha T, Takenaka Y, Kajiura H, Naramoto S, Yokoyama R, Ishizaki K, Nishitani K, Ishimizu T. Diversity of Pectin Rhamnogalacturonan I Rhamnosyltransferases in Glycosyltransferase Family 106. FRONTIERS IN PLANT SCIENCE 2020; 11:997. [PMID: 32714362 PMCID: PMC7343896 DOI: 10.3389/fpls.2020.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 05/23/2023]
Abstract
Rhamnogalacturonan I (RG-I) comprises approximately one quarter of the pectin molecules in land plants, and the backbone of RG-I consists of a repeating sequence of [2)-α-L-Rha(1-4)-α-D-GalUA(1-] disaccharide. Four Arabidopsis thaliana genes encoding RG-I rhamnosyltransferases (AtRRT1 to AtRRT4), which synthesize the disaccharide repeats, have been identified in the glycosyltransferase family (GT106). However, the functional role of RG-I in plant cell walls and the evolutional history of RRTs remains to be clarified. Here, we characterized the sole ortholog of AtRRT1-AtRRT4 in liverwort, Marchantia polymorpha, namely, MpRRT1. MpRRT1 had RRT activity and genetically complemented the AtRRT1-deficient mutant phenotype in A. thaliana. However, the MpRRT1-deficient M. polymorpha mutants showed no prominent morphological changes and only an approximate 20% reduction in rhamnose content in the cell wall fraction compared to that in wild-type plants, suggesting the existence of other RRT gene(s) in the M. polymorpha genome. As expected, we detected RRT activities in other GT106 family proteins such as those encoded by MpRRT3 in M. polymorpha and FRB1/AtRRT8 in A. thaliana, the deficient mutant of which affects cell adhesion. Our results show that RRT genes are more redundant and diverse in GT106 than previously thought.
Collapse
Affiliation(s)
| | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
10
|
Nanda AK, El Habti A, Hocart CH, Masle J. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6417-6435. [PMID: 31504732 PMCID: PMC6859730 DOI: 10.1093/jxb/erz385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.
Collapse
Affiliation(s)
- Amrit K Nanda
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Abdeljalil El Habti
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | | |
Collapse
|
11
|
Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW. Variation in Expression of the HECT E3 Ligase UPL3 Modulates LEC2 Levels, Seed Size, and Crop Yields in Brassica napus. THE PLANT CELL 2019; 31:2370-2385. [PMID: 31439805 DOI: 10.1101/334581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 05/28/2023]
Abstract
Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.
Collapse
Affiliation(s)
- Charlotte Miller
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rachel Wells
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Neil McKenzie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joshua Ball
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Abdelhak Fatihi
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Loic Lepiniec
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Michael W Bevan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
12
|
Mukherjee T, Lerma-Reyes R, Thompson KA, Schrick K. Making glue from seeds and gums: Working with plant-based polymers to introduce students to plant biochemistry. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:468-475. [PMID: 31074938 PMCID: PMC6707524 DOI: 10.1002/bmb.21252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Plants and plant products are key to the survival of life on earth. Despite this fact, the significance of plant biochemistry is often underrepresented in science curricula. We designed an innovative laboratory activity to engage students in learning about the biochemical properties of natural polymers produced by plants. The focus of the hands-on activity is on mucilages and gums, which contain complex polysaccharides that have applications in industry. The 1.5-h activity is organized into three laboratory exercises. It begins with a demonstration of the water absorption property of seed coat mucilage upon hydration of seeds from psyllium, a plant that is grown commercially for mucilage production. The second exercise involves microscopy of a variety of plant seeds stained with ruthenium red dye to visualize pectin polysaccharides of the seed mucilage. Students learn about phenotypic variation among plant species and how the seed coat mucilage is beneficial to keep seeds hydrated during germination. The third exercise highlights an industrial application of plant gums as adhesives. The students prepare edible glue made with gum arabic, a type of plant polymer from the dried exudate of the Acacia plant. This three-part activity has been implemented in conjunction with a Girls Researching Our World (GROW) summer workshop for sixth to eighth graders over a 4-year period. It may be adapted as a laboratory activity for students of all ages, for example, to enhance biochemistry education for high-school students or undergraduate non-majors. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):468-475, 2019.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, KS 66506
- Interdepartmental Genetics Program, Kansas State University, Manhattan, KS 66506
| | - Kyle A. Thompson
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506
- Interdepartmental Genetics Program, Kansas State University, Manhattan, KS 66506
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
13
|
Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains. Dev Cell 2019; 48:261-276.e8. [DOI: 10.1016/j.devcel.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
14
|
Takenaka Y, Kato K, Ogawa-Ohnishi M, Tsuruhama K, Kajiura H, Yagyu K, Takeda A, Takeda Y, Kunieda T, Hara-Nishimura I, Kuroha T, Nishitani K, Matsubayashi Y, Ishimizu T. Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. NATURE PLANTS 2018; 4:669-676. [PMID: 30082766 DOI: 10.1038/s41477-018-0217-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
Pectin is one of the three key cell wall polysaccharides in land plants and consists of three major structural domains: homogalacturonan, rhamnogalacturonan I (RG-I) and RG-II. Although the glycosyltransferase required for the synthesis of the homogalacturonan and RG-II backbone was identified a decade ago, those for the synthesis of the RG-I backbone, which consists of the repeating disaccharide unit [→2)-α-L-Rha-(1 → 4)-α-D-GalUA-(1→], have remained unknown. Here, we report the identification and characterization of Arabidopsis RG-I:rhamnosyltransferases (RRTs), which transfer the rhamnose residue from UDP-β-L-rhamnose to RG-I oligosaccharides. RRT1, which is one of the four Arabidopsis RRTs, is a single-spanning transmembrane protein, localized to the Golgi apparatus. RRT1 was highly expressed during formation of the seed coat mucilage, which is a specialized cell wall with abundant RG-I. Loss-of-function mutation in RRT1 caused a reduction in the level of RG-I in the seed coat mucilage. The RRTs belong to a novel glycosyltransferase family, now designated GT106. This is a large plant-specific family, and glycosyltransferases in this family seem to have plant-specific roles, such as biosynthesis of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Yuto Takenaka
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kato
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Kana Tsuruhama
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Kenta Yagyu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Atsushi Takeda
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoichi Takeda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Kunieda
- Faculty of Science and Technology, Konan University, Kobe, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Takeshi Ishimizu
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
| |
Collapse
|
15
|
Visscher AM, Belfield EJ, Vlad D, Irani N, Moore I, Harberd NP. Overexpressing the Multiple-Stress Responsive Gene At1g74450 Reduces Plant Height and Male Fertility in Arabidopsis thaliana. PLoS One 2015; 10:e0140368. [PMID: 26485022 PMCID: PMC4619001 DOI: 10.1371/journal.pone.0140368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
A subset of genes in Arabidopsis thaliana is known to be up-regulated in response to a wide range of different environmental stress factors. However, not all of these genes are characterized as yet with respect to their functions. In this study, we used transgenic knockout, overexpression and reporter gene approaches to try to elucidate the biological roles of five unknown multiple-stress responsive genes in Arabidopsis. The selected genes have the following locus identifiers: At1g18740, At1g74450, At4g27652, At4g29780 and At5g12010. Firstly, T-DNA insertion knockout lines were identified for each locus and screened for altered phenotypes. None of the lines were found to be visually different from wildtype Col-0. Secondly, 35S-driven overexpression lines were generated for each open reading frame. Analysis of these transgenic lines showed altered phenotypes for lines overexpressing the At1g74450 ORF. Plants overexpressing the multiple-stress responsive gene At1g74450 are stunted in height and have reduced male fertility. Alexander staining of anthers from flowers at developmental stage 12-13 showed either an absence or a reduction in viable pollen compared to wildtype Col-0 and At1g74450 knockout lines. Interestingly, the effects of stress on crop productivity are most severe at developmental stages such as male gametophyte development. However, the molecular factors and regulatory networks underlying environmental stress-induced male gametophytic alterations are still largely unknown. Our results indicate that the At1g74450 gene provides a potential link between multiple environmental stresses, plant height and pollen development. In addition, ruthenium red staining analysis showed that At1g74450 may affect the composition of the inner seed coat mucilage layer. Finally, C-terminal GFP fusion proteins for At1g74450 were shown to localise to the cytosol.
Collapse
Affiliation(s)
- Anne M Visscher
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| | - Eric J Belfield
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| | - Daniela Vlad
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| | - Niloufer Irani
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, Oxfordshire, United Kingdom
| |
Collapse
|