1
|
Song G, Montes C, Olatunji D, Malik S, Ji C, Clark NM, Pu Y, Kelley DR, Walley JW. Quantitative proteomics reveals extensive lysine ubiquitination and transcription factor stability states in Arabidopsis. THE PLANT CELL 2024; 37:koae310. [PMID: 39570863 DOI: 10.1093/plcell/koae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples. This approach identified 17,940 ubiquitinated lysine sites arising from 6,453 proteins from Arabidopsis (Arabidopsis thaliana) primary roots, seedlings, and rosette leaves. Gene ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. We determined ubiquitinated lysine residues that directly regulate the stability of three transcription factors, CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) using in vivo degradation assays. Furthermore, codon mutation of CIB1 to create a K166R conversion to prevent ubiquitination, via CRISPR/Cas9-derived adenosine base editing, led to an early flowering phenotype and increased expression of FLOWERING LOCUS T (FT). These comprehensive site-level ubiquitinome profiles provide a wealth of data for future functional studies related to modulation of biological processes mediated by this post-translational modification in plants.
Collapse
Affiliation(s)
- Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Damilola Olatunji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Shikha Malik
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Chonghui Ji
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natalie M Clark
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
2
|
Wu Q, Xu J, Zhao Y, Wang Y, Zhou L, Ning L, Shabala S, Zhao H. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. PLANT PHYSIOLOGY 2024; 196:535-550. [PMID: 38743701 PMCID: PMC11376383 DOI: 10.1093/plphys/kiae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Maize (Zea mays L.) has very strong requirements for nitrogen. However, the molecular mechanisms underlying the regulations of nitrogen uptake and translocation in this species are not fully understood. Here, we report that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ZmEREB97 functions as an important regulator in the N signaling network in maize. Predominantly expressed and accumulated in main root and lateral root primordia, ZmEREB97 rapidly responded to nitrate treatment. By overlapping the analyses of differentially expressed genes and conducting a DAP-seq assay, we identified 1,446 potential target genes of ZmEREB97. Among these, 764 genes were coregulated in 2 lines of zmereb97 mutants. Loss of function of ZmEREB97 substantially weakened plant growth under both hydroponic and soil conditions. Physiological characterization of zmereb97 mutant plants demonstrated that reduced biomass and grain yield were both associated with reduced nitrate influx, decreased nitrate content, and less N accumulation. We further demonstrated that ZmEREB97 directly targets and regulates the expression of 6 ZmNRT genes by binding to the GCC-box-related sequences in gene promoters. Collectively, these data suggest that ZmEREB97 is a major positive regulator of the nitrate response and that it plays an important role in optimizing nitrate uptake, offering a target for improvement of nitrogen use efficiency in crops.
Collapse
Affiliation(s)
- Qi Wu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Xu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingdi Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuancong Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ling Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Germplasm Innovation in Downstream of Huaihe River, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
3
|
Li Q, Serio RJ, Schofield A, Liu H, Rasmussen SR, Hofius D, Stone SL. Arabidopsis RING-type E3 ubiquitin ligase XBAT35.2 promotes proteasome-dependent degradation of ACD11 to attenuate abiotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1712-1723. [PMID: 33080095 DOI: 10.1111/tpj.15032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Plants employ multiple mechanisms to cope with a constantly changing and challenging environment, including using the ubiquitin proteasome system (UPS) to alter their proteome to assist in initiating, modulating and terminating responses to stress. We previously reported that the ubiquitin ligase XBAT35.2 mediates the proteasome-dependent degradation of Accelerated Cell Death 11 (ACD11) to promote pathogen defense. Here, we demonstrate roles for XBAT35.2 and ACD11 in abiotic stress tolerance. As seen in response to pathogen infection, abiotic stress stabilizes XBAT35.2 and the abundance of ACD11 rose consistently with increasing concentrations of abscisic acid (ABA) and salt. Surprisingly, exposure to ABA and salt increased the stability of ACD11, and the overexpression of ACD11 improves plant survival of salt and drought stress, suggesting a role for ACD11 in promoting tolerance. Prolonged exposure to high concentrations of ABA or salt resulted in ubiquitination and the proteasome-dependent degradation of ACD11, however. The stress-induced turnover of ACD11 requires XBAT35.2, as degradation is slowed in the absence of the E3 ubiquitin ligase. Consistent with XBAT35.2 mediating the proteasome-dependent degradation of ACD11, the loss of E3 ubiquitin ligase function enhances the tolerance of salt and drought stress, whereas overexpression increases sensitivity. A model is presented where, upon the perception of abiotic stress, ACD11 abundance increases to promote tolerance. Meanwhile, XBAT35.2 accumulates and in turn promotes the degradation of ACD11 to attenuate the stress response. The results characterize XBAT35.2 as an E3 ubiquitin ligase with opposing roles in abiotic and biotic stress.
Collapse
Affiliation(s)
- Qiaomu Li
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Renata J Serio
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrew Schofield
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Hongxia Liu
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Sheena R Rasmussen
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, 756 51, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, 756 51, Sweden
| | - Sophia L Stone
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
4
|
Abstract
Determination of the general capacity of proteolytic activity of a certain cell or tissue type can be crucial for an assessment of various features of an organism's growth and development and also for the optimization of biotechnological applications. Here, we describe the use of chimeric protein stability reporters that can be detected by standard laboratory techniques such as histological staining, selection using selective media or fluorescence microscopy. Dependent on the expression of the reporters due to the promoters applied, cell- and tissue-specific questions can be addressed. Here, we concentrate on methods which can be used for large-scale screening for protein stability changes rather than for detailed protein stability studies.
Collapse
Affiliation(s)
- Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.
| |
Collapse
|