2
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Jin F, Peng F, Kong XY, Li WR, Chai JQ, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, and antifungal activity of novel pyrazole carboxamide derivatives containing benzimidazole moiety as potential SDH inhibitors. Mol Divers 2024:10.1007/s11030-024-10957-y. [PMID: 39150608 DOI: 10.1007/s11030-024-10957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
To address the urgent need for new antifungal agents, a collection of novel pyrazole carboxamide derivatives incorporating a benzimidazole group were innovatively designed, synthesized, and evaluated for their efficacy against fungal pathogens. The bioassay results revealed that the EC50 values for the compounds A7 (3-(difluoromethyl)-1-methyl-N-(1-propyl-1H-benzo[d]imidazol-2-yl)-1H-pyrazole-4-carboxamide) and B11 (N-(1-(4-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide) against B. cinerea were notably low to 0.79 µg/mL and 0.56 µg/mL, respectively, demonstrating the potency comparable to that of the control fungicide boscalid, which has an EC50 value of 0.60 µg/mL. Noteworthy is the fact that in vivo tests demonstrated that A7 and B11 showed superior protective effects on tomatoes and strawberries against B. cinerea infection when juxtaposed with the commercial fungicide carbendazim. The examination through scanning electron microscopy revealed that B11 notably alters the morphology of the fungal mycelium, inducing shrinkage and roughening of the hyphal surfaces. To elucidate the mechanism of action, the study on molecular docking and molecular dynamics simulations was conducted, which suggested that B11 effectively interacts with crucial amino acid residues within the active site of succinate dehydrogenase (SDH). This investigation contributes a novel perspective for the structural design and diversification of potential SDH inhibitors, offering a promising avenue for the development of antifungal therapeutics.
Collapse
Affiliation(s)
- Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Peng
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Yi Kong
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Rui Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Hua Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Wang H, Zheng Y, Xiao D, Li Y, Liu T, Hou X. BcWRKY33A Enhances Resistance to Botrytis cinerea via Activating BcMYB51-3 in Non-Heading Chinese Cabbage. Int J Mol Sci 2022; 23:ijms23158222. [PMID: 35897830 PMCID: PMC9331318 DOI: 10.3390/ijms23158222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023] Open
Abstract
The transcription factor WRKY33 is a vital regulator of the biological process of the necrotrophic fungus Botrytis cinerea (B. cinerea). However, its specific regulatory mechanism remains to be further investigated. In non-heading Chinese cabbage (NHCC, Brassica campestris (syn. Brassica rapa) ssp. Chinensis), our previous study showed that BcWRKY33A is induced not only by salt stress, but also by B. cinerea infection. Here, we noticed that BcWRKY33A is expressed in trichomes and confer plant defense resistance. Disease symptoms and qRT-PCR analyses revealed that BcWRKY33A-overexpressing and -silencing lines were less and more severely impaired, respectively, than wild type upon B. cinerea treatment. Meanwhile, the transcripts’ abundance of indolic glucosinolates’ (IGSs) biosynthetic genes is consistent with plants’ B. cinerea tolerance. Identification and expression pattern analysis of BcMYB51s showed that BcMYB51-3 has a similar trend to BcWRKY33A upon B. cinerea infection. Moreover, BcWRKY33A directly binds to the BcMYB51-3 promoter, which was jointly confirmed by Y1H, dual-LUC, and EMSA assays. The importance of MYB51, the homolog of BcMYB51-3, in the BcWRKY33A-mediated B. cinerea resistance was also verified using the TRV-based VIGS system. Overall, our data concludes that BcWRKY33A directly activates the expression of BcMYB51-3 and downstream IGSs’ biosynthetic genes, thereby improving the B. cinerea tolerance of NHCC plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Yushan Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Correspondence: (T.L.); (X.H.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.Z.); (D.X.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.L.); (X.H.)
| |
Collapse
|
5
|
Lian J, Han H, Chen X, Chen Q, Zhao J, Li C. Stemphylium lycopersici Nep1-like Protein (NLP) Is a Key Virulence Factor in Tomato Gray Leaf Spot Disease. J Fungi (Basel) 2022; 8:jof8050518. [PMID: 35628773 PMCID: PMC9144795 DOI: 10.3390/jof8050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Stemphylium lycopersici (S. lycopersici) is an economically important plant pathogen that causes grey leaf spot disease in tomato. However, functional genomic studies in S. lycopersici are lacking, and the factors influencing its pathogenicity remain largely unknown. Here, we present the first example of genetic transformation and targeted gene replacement in S. lycopersici. We functionally analyzed the NLP gene, which encodes a necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein (NLP). We found that targeted disruption of the NLP gene in S. lycopersici significantly compromised its virulence on tomato. Moreover, our data suggest that NLP affects S. lycopersici conidiospore production and weakly affects its adaptation to osmotic and oxidative stress. Interestingly, we found that NLP suppressed the production of reactive oxygen species (ROS) in tomato leaves during S. lycopersici infection. Further, expressing the fungal NLP in tomato resulted in constitutive transcription of immune-responsive genes and inhibited plant growth. Through gene manipulation, we demonstrated the function of NLP in S. lycopersici virulence and development. Our work provides a paradigm for functional genomics studies in a non-model fungal pathogen system.
Collapse
Affiliation(s)
- Jiajie Lian
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Hongyu Han
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Xizhan Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Jiuhai Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (J.Z.); (C.L.)
| | - Chuanyou Li
- University of Chinese Academy of Sciences, Beijing 100864, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.Z.); (C.L.)
| |
Collapse
|