1
|
Del Pozo M, Aguanell A, García-Junceda E, Revuelta J. Lysozyme-Responsive Hydrogels of Chitosan-Streptomycin Conjugates for the On-Demand Release of Biofilm-Dispersing Enzymes for the Efficient Eradication of Oral Biofilms. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9860-9873. [PMID: 39398375 PMCID: PMC11468777 DOI: 10.1021/acs.chemmater.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Hydrogels with controlled degradation and sustained antibiofilm activity are promising biomaterials for the treatment of oral infections such as periodontitis or caries. In this article, an in situ forming chitosan-streptomycin hydrogel is developed that can target established bacterial biofilms in response to lysozyme, an enzyme that is overexpressed in saliva during oral infections. When the new hydrogel is applied to simulated oral biofilms, the overexpressed lysozyme degrades the hydrogel and releases chitosan-streptomycin oligosaccharides that can eradicate the biofilm. This work has shown that the coupling of chitosan and streptomycin can have a synergistic effect and that the new hydrogel based on chitosan-streptomycin conjugate can effectively combat biofilms of E. coli, S. aureus, and P. aeruginosa formed in vitro achieving a significant reduction in the biomass of the biofilm and a substantial reduction in the population of viable bacteria in established biofilms. Finally, the CS-Str hydrogel loaded with biofilm-disrupting enzymes, in particular, DNase I and/or DspB, showed a significantly increased ability to reduce the biofilm biomass of P. aeruginosa and S. aureus (by over 84% and up to 92%, respectively), resulting in a drastic reduction in cell viability, which fell below 4% for P. aeruginosa and below 5% for S. aureus.
Collapse
Affiliation(s)
- María
Luisa Del Pozo
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Antonio Aguanell
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Eduardo García-Junceda
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Julia Revuelta
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
2
|
Deng W, Lei Y, Tang X, Li D, Liang J, Luo J, Liu L, Zhang W, Ye L, Kong J, Wang K, Chen Z. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol 2022; 12:917038. [PMID: 36310876 PMCID: PMC9597695 DOI: 10.3389/fcimb.2022.917038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2023] Open
Abstract
Anti-infection strategies against pleural empyema include the use of antibiotics and drainage treatments, but bacterial eradication rates remain low. A major challenge is the formation of biofilms in the pleural cavity. DNase has antibiofilm efficacy in vitro, and intrapleural therapy with DNase is recommended to treat pleural empyema, but the relevant mechanisms remain limited. Our aim was to investigate whether DNase I inhibit the early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. We used various assays, such as crystal violet staining, confocal laser scanning microscopy (CLSM) analysis, peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH), and scanning electron microscopy (SEM) analysis. Our results suggested that DNase I significantly inhibited early biofilm formation in a dose-dependent manner, without affecting the growth of P. aeruginosa or S. aureus in vitro. CLSM analysis confirmed that DNase I decreased the biomass and thickness of both bacterial biofilms. The PNA-FISH and SEM analyses also revealed that DNase I inhibited early (24h) biofilm formation in two empyema models. Thus, the results indicated that DNase inhibited early (24h) biofilm formation in P. aeruginosa- or S. aureus-induced rabbit empyema models and showed its therapeutic potential against empyema biofilms.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanmei Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinhua Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyuan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenshu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liumei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoyan Chen
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|