1
|
Kiapour AM, Sieker JT, Proffen BL, Lam TT, Fleming BC, Murray MM. Synovial fluid proteome changes in ACL injury-induced posttraumatic osteoarthritis: Proteomics analysis of porcine knee synovial fluid. PLoS One 2019; 14:e0212662. [PMID: 30822327 PMCID: PMC6396923 DOI: 10.1371/journal.pone.0212662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 02/07/2019] [Indexed: 01/26/2023] Open
Abstract
Surgical transection of the anterior cruciate ligament (ACL) in the porcine model leads to posttraumatic osteoarthritis if left untreated. However, a recently developed surgical treatment, bridge-enhanced ACL repair, prevents further cartilage damage. Since the synovial fluid bathes all the intrinsic structures of knee, we reasoned that a comparative analysis of synovial fluid protein contents could help to better understand the observed chondroprotective effects of the bridge-enhanced ACL repair. We hypothesized that post-surgical changes in the synovial fluid proteome would be different in the untreated and repaired knees, and those changes would correlate with the degree of cartilage damage. Thirty adolescent Yucatan mini-pigs underwent unilateral ACL transection and were randomly assigned to either no further treatment (ACLT, n = 14) or bridge-enhanced ACL repair (BEAR, n = 16). We used an isotopically labeled high resolution LC MS/MS-based proteomics approach to analyze the protein profile of synovial fluid at 6 and 12 months after ACL transection in untreated and repaired porcine knees. A linear mixed effect model was used to compare the normalized protein abundance levels between the groups at each time point. Bivariate linear regression analyses were used to assess the correlations between the macroscopic cartilage damage (total lesion area) and normalized abundance levels of each of the identified secreted proteins. There were no significant differences in cartilage lesion area or quantitative abundance levels of the secreted proteins between the ACLT and BEAR groups at 6 months. However, by 12 months, greater cartilage damage was seen in the ACLT group compared to the BEAR group (p = 0.005). This damage was accompanied by differences in the abundance levels of secreted proteins, with higher levels of Vitamin K-dependent protein C (p = 0.001), and lower levels of Apolipoprotein A4 (p = 0.021) and Cartilage intermediate layer protein 1 (p = 0.049) in the ACLT group compared to the BEAR group. There were also group differences in the secreted proteins that significantly changed in abundance between 6 and 12 months in ACLT and BEAR knees. Increased concentration of Ig lambda-1 chain C regions and decreased concentration of Hemopexin, Clusterin, Coagulation factor 12 and Cartilage intermediate layer protein 1 were associated with greater cartilage lesion area. In general, ACLT knees had higher concentrations of pro-inflammatory proteins and lower concentrations of anti-inflammatory proteins than BEAR group. In addition, the ACLT group had a lower and declining synovial concentrations of CILP, in contrast to a consistently high abundance of CILP in repaired knees. These differences suggest that the knees treated with bridge-enhanced ACL repair may be maintaining an environment that is more protective of the extracellular matrix, a function which is not seen in the ACLT knees.
Collapse
Affiliation(s)
- Ata M. Kiapour
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Jakob T. Sieker
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States of America
- MS & Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT, United States of America
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University & Rhode Island Hospital, Providence, RI, United States of America
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
Clement CC, Moncrieffe H, Lele A, Janow G, Becerra A, Bauli F, Saad FA, Perino G, Montagna C, Cobelli N, Hardin J, Stern LJ, Ilowite N, Porcelli SA, Santambrogio L. Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight 2016; 1:85633. [PMID: 26973882 DOI: 10.1172/jci.insight.85633] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatological condition. Although it has been proposed that JIA has an autoimmune component, the autoantigens are still unknown. Using biochemical and proteomic approaches, we identified the molecular chaperone transthyretin (TTR) as an antigenic target for B and T cell immune responses. TTR was eluted from IgG complexes and affinity purified from 3 JIA patients, and a statistically significant increase in TTR autoantibodies was observed in a group of 43 JIA patients. Three cryptic, HLA-DR1-restricted TTR peptides, which induced CD4+ T cell expansion and IFN-γ and TNF-α production in 3 out of 17 analyzed patients, were also identified. Misfolding, aggregation and oxidation of TTR, as observed in the synovial fluid of all JIA patients, enhanced its immunogenicity in HLA-DR1 transgenic mice. Our data point to TTR as an autoantigen potentially involved in the pathogenesis of JIA and to oxidation and aggregation as a mechanism facilitating TTR autoimmunity.
Collapse
Affiliation(s)
- Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Halima Moncrieffe
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aditi Lele
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ginger Janow
- Department of Pediatric Rheumatology, Montefiore Medical Center, New York, New York, USA
| | - Aniuska Becerra
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Francesco Bauli
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Fawzy A Saad
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Giorgio Perino
- Department of Pathology, Hospital for Special Surgery, New York, New York, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Neil Cobelli
- Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA
| | - John Hardin
- Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Norman Ilowite
- Department of Pediatric Rheumatology, Montefiore Medical Center, New York, New York, USA
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Takinami Y, Yoshimatsu S, Uchiumi T, Toyosaki-Maeda T, Morita A, Ishihara T, Yamane S, Fukuda I, Okamoto H, Numata Y, Fukui N. Identification of potential prognostic markers for knee osteoarthritis by serum proteomic analysis. Biomark Insights 2013; 8:85-95. [PMID: 23935359 PMCID: PMC3735238 DOI: 10.4137/bmi.s11966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND As osteoarthritis (OA) is a highly heterogeneous disease in terms of progression, establishment of prognostic biomarkers would be highly beneficial for treatment. The present study was performed to identify novel biomarkers capable of predicting the progression of knee OA. METHODS A total of 69 plasma samples (OA patients undergoing radiographic progression, n = 25; nonprogression, n = 33; healthy donors, n = 11) were analyzed by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and ion peaks of interest were identified by liquid chromatography and matrix-assisted laser desorption/ionization (MALDI)-TOF MS. The identities of these proteins were further validated by immunoprecipitation combined with SELDI-TOF MS analysis. RESULTS SELDI-TOF MS analysis indicated that the intensities of 3 ion peaks differed significantly between progressors and nonprogressors. Subsequent analyses indicated that these peaks corresponded to apolipoprotein C-I, C-III, and an N-terminal truncated form of transthyretin, respectively. The identities of these proteins were confirmed by the loss of ion peaks in SELDI-TOF MS spectra by immunoprecipitation using specific antibodies for the respective proteins. CONCLUSIONS Three potential biomarkers were identified whose serum levels differed significantly between OA progressors and nonprogressors. These biomarkers are expected to be prognostic biomarkers for knee OA and to facilitate the development of novel disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Yoshihiko Takinami
- Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The serum amyloid A (SAA) protein is an acute phase protein that is synthesized under the regulation of inflammatory cytokines during both acute and chronic inflammation. It is suggested that the SAA increases correlate with many types of carcinogenesis and neoplastic diseases. Th changes in SAA in serum could therefore indicate the progress and malignancy of the disease, as well as the host responses. The present paper reviewed the rationale of using SAA as potential cancer biomarker in clinical diagnosis, including the contribution and involvement of SAA in cancer growth and development. Then we discussed the current applications of SAA in diagnosis and tracing of different types of cancers. Finally the proteomics techniques, especially the SELDI-TOF MS to identify SAA in serum from patients were appreciated as an important manner in clinical diagnosis.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
5
|
Vanarsa K, Mohan C. Proteomics in rheumatology: the dawn of a new era. F1000 MEDICINE REPORTS 2010; 2:87. [PMID: 21283596 PMCID: PMC3026622 DOI: 10.3410/m2-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most rheumatic autoimmune diseases are complex in terms of their genetic origins and underlying pathogenic processes. Non-hypothesis-driven scanning platforms are adding novel insights to our understanding of these multifactorial diseases. This review summarizes the handful of recent proteomic studies that have been executed using samples from patients with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, osteoarthritis, or Sjogren's syndrome. The candidate biomarkers that have been uncovered in the reviewed studies have potential applications in diagnosis, prognosis, and theranostics. Though we are at the infancy of the proteomics era in rheumatology, the limited number of molecules uncovered thus far already hold promise. Ongoing research in proteomics holds tremendous potential for shaping how rheumatic diseases are diagnosed, prognosticated, and managed clinically over the coming years.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Department of Internal Medicine, Rheumatic Divisions Department, UT Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390-8884 USA
| | | |
Collapse
|