1
|
Strauch A, Rossa B, Köhler F, Haeussler S, Mühlhofer M, Rührnößl F, Körösy C, Bushman Y, Conradt B, Haslbeck M, Weinkauf S, Buchner J. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. J Biol Chem 2022; 299:102753. [PMID: 36442512 PMCID: PMC9800568 DOI: 10.1016/j.jbc.2022.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.
Collapse
Affiliation(s)
- Annika Strauch
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Benjamin Rossa
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Florian Rührnößl
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Caroline Körösy
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
2
|
Cao Z, Fung CW, Mak HY. A Flexible Network of Lipid Droplet Associated Proteins Support Embryonic Integrity of C. elegans. Front Cell Dev Biol 2022; 10:856474. [PMID: 35445028 PMCID: PMC9015696 DOI: 10.3389/fcell.2022.856474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to coordinating the storage and mobilization of neutral fat, lipid droplets (LDs) are conserved organelles that can accommodate additional cargos in order to support animal development. However, it is unclear if each type of cargo is matched with a specific subset of LDs. Here, we report that SEIP-1/seipin defines a subset of oocyte LDs that are required for proper eggshell formation in C. elegans. Using a photoconvertible fluorescent protein-based imaging assay, we found that SEIP-1 positive LDs were selectively depleted after fertilization, coincident of the formation of a lipid-rich permeability barrier of the eggshell. Loss of SEIP-1 function caused impenetrant embryonic arrest, which could be worsened by FAT-3/fatty acyl-CoA desaturase deficiency or suppressed by PLIN-1/Perilipin deficiency. The embryonic development of seip-1; plin-1 mutant in turn depended on the recruitment of RAB-18/Rab18 to LDs, which was not observed in wild type embryos. We propose that SEIP-1 dependent and independent mechanisms act in parallel to ensure the packaging and export of lipid-rich permeability barrier constituents, which involve LDs. The identity of these LDs, as defined by their associated proteins, exhibits unexpected plasticity that ultimately ensures the survival of embryos ex utero.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
3
|
Dyshlyuk LS, Dmitrieva AI, Drozdova MY, Milentyeva IS, Prosekov AY. Relevance of bioassay of biologically active substances (BAS) with geroprotective properties in the model of the nematode Caenorhabditis elegans in experiments in vivo. Curr Aging Sci 2021; 15:121-134. [PMID: 34856917 DOI: 10.2174/1874609814666211202144911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.
Collapse
Affiliation(s)
- Lyubov S Dyshlyuk
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Anastasiya I Dmitrieva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Margarita Yu Drozdova
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Irina S Milentyeva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Alexander Yu Prosekov
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| |
Collapse
|
4
|
Suehiro Y, Yoshina S, Motohashi T, Iwata S, Dejima K, Mitani S. Efficient collection of a large number of mutations by mutagenesis of DNA damage response defective animals. Sci Rep 2021; 11:7630. [PMID: 33828169 PMCID: PMC8027614 DOI: 10.1038/s41598-021-87226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
With the development of massive parallel sequencing technology, it has become easier to establish new model organisms that are ideally suited to the specific biological phenomena of interest. Considering the history of research using classical model organisms, we believe that the efficient construction and sharing of gene mutation libraries will facilitate the progress of studies using these new model organisms. Using C. elegans, we applied the TMP/UV mutagenesis method to animals lacking function in the DNA damage response genes atm-1 and xpc-1. This method produces genetic mutations three times more efficiently than mutagenesis of wild-type animals. Furthermore, we confirmed that the use of next-generation sequencing and the elimination of false positives through machine learning could automate the process of mutation identification with an accuracy of over 95%. Eventually, we sequenced the whole genomes of 488 strains and isolated 981 novel mutations generated by the present method; these strains have been made available to anyone who wants to use them. Since the targeted DNA damage response genes are well conserved and the mutagens used in this study are also effective in a variety of species, we believe that our method is generally applicable to a wide range of animal species.
Collapse
Affiliation(s)
- Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Motohashi
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Satoru Iwata
- Chubu University Center for Education in Laboratory Animal Research, Kasugai, Aichi, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Shinjuku, Tokyo, Japan.
| |
Collapse
|
5
|
Partridge FA, Forman R, Bataille CJR, Wynne GM, Nick M, Russell AJ, Else KJ, Sattelle DB. Anthelmintic drug discovery: target identification, screening methods and the role of open science. Beilstein J Org Chem 2020; 16:1203-1224. [PMID: 32550933 PMCID: PMC7277699 DOI: 10.3762/bjoc.16.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there has been much progress in open-source systems for compound screening with parasites, including motility assays but also high content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs, such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insecticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work exemplifies how open science approaches can catalyse drug discovery against neglected diseases.
Collapse
Affiliation(s)
- Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ruth Forman
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Carole J R Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Marina Nick
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Kathryn J Else
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|