1
|
Waseem M, Wang BD. Combination of miR-99b-5p and Enzalutamide or Abiraterone Synergizes the Suppression of EMT-Mediated Metastasis in Prostate Cancer. Cancers (Basel) 2024; 16:1933. [PMID: 38792011 PMCID: PMC11119738 DOI: 10.3390/cancers16101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Androgen deprivation therapy (ADT) has been systemically applied as a first-line therapy for PCa patients. Despite the initial responses, the majority of patients under ADT eventually experienced tumor progression to castration-resistant prostate cancer (CRPC), further leading to tumor metastasis to distant organs. Therefore, identifying the key molecular mechanisms underlying PCa progression remains crucial for the development of novel therapies for metastatic PCa. Previously, we identified that tumor-suppressive miR-99b-5p is frequently downregulated in aggressive African American (AA) PCa and European American (EA) CRPC, leading to upregulation of mTOR, androgen receptor (AR), and HIF-1α signaling. Given the fact that mTOR and HIF-1α signaling are critical upstream pathways that trigger the activation of epithelial-mesenchymal transition (EMT), we hypothesized that miR-99b-5p may play a critical functional role in regulating EMT-mediated PCa metastasis. To test this hypothesis, a series of cell biology, biochemical, and in vitro functional assays (wound healing, transwell migration, cell/ECM adhesion, and capillary-like tube formation assays) were performed to examine the effects of miR-99b-5p mimic on regulating EMT-mediated PCa metastasis processes. Our results have demonstrated that miR-99b-5p simultaneously targets MTOR and AR signaling, leading to upregulation of E-cadherin, downregulation of Snail/N-cadherin/Vimentin, and suppression of EMT-mediated PCa metastasis. MiR-99b-5p alone and in combination with enzalutamide or abiraterone significantly inhibits the EMT-mediated metastasis of AA PCa and EA CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
3
|
Roberts MJ, Maurer T, Perera M, Eiber M, Hope TA, Ost P, Siva S, Hofman MS, Murphy DG, Emmett L, Fendler WP. Using PSMA imaging for prognostication in localized and advanced prostate cancer. Nat Rev Urol 2023; 20:23-47. [PMID: 36473945 DOI: 10.1038/s41585-022-00670-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
The use of prostate-specific membrane antigen (PSMA)-directed applications in modern prostate cancer management has evolved rapidly over the past few years, helping to establish new treatment pathways and provide further insights into prostate cancer biology. However, the prognostic implications of PSMA-PET have not been studied systematically, owing to rapid clinical implementation without long follow-up periods to determine intermediate-term and long-term oncological outcomes. Currently available data suggest that traditional prognostic factors and survival outcomes are associated with high PSMA expression (both according to immunohistochemistry and PET uptake) in men with localized and biochemically recurrent disease. Treatment with curative intent (primary and/or salvage) often fails when PSMA-positive metastases are present; however, the sensitivity of PSMA-PET in detecting all metastases is poor. Low PSMA-PET uptake in recurrent disease is a favourable prognostic factor; however, it can be associated with poor prognosis in conjunction with high 18F-fluorodeoxyglucose uptake in metastatic castration-resistant prostate cancer. Clinical trials embedding PSMA-PET for guiding management with reliable oncological outcomes are needed to support ongoing clinical use.
Collapse
Affiliation(s)
- Matthew J Roberts
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Queensland, Australia.
- Department of Urology, Redcliffe Hospital, Brisbane, Queensland, Australia.
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Center, Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlon Perera
- Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, GZA Ziekenhuizen, Antwerp, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Shankar Siva
- Peter MacCallum Cancer Centre, Radiation Oncology, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, Victoria, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, Victoria, Australia
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, Victoria, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
- PET Committee of the German Society of Nuclear Medicine, Goettingen, Germany
| |
Collapse
|
4
|
Stikbakke E, Wilsgaard T, Haugnes HS, Pedersen MI, Knutsen T, Støyten M, Giovannucci E, Eggen AE, Thune I, Richardsen E. Expression of miR-24-1-5p in Tumor Tissue Influences Prostate Cancer Recurrence: The PROCA- life Study. Cancers (Basel) 2022; 14:cancers14051142. [PMID: 35267449 PMCID: PMC8909269 DOI: 10.3390/cancers14051142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The role of miR-24-1-5p and its prognostic implications associated with prostate cancer are mainly unknown. In a population-based cohort, the Prostate Cancer Study throughout life (PROCA-life), all men had a general health examination at study entry and were followed between 1994 and 2016. Patients with available tissue samples after a prostatectomy with curative intent were identified (n = 189). The tissue expression of miR-24-1-5p in prostate cancer was examined by in situ hybridization (ISH) in tissue microarray (TMA) blocks by semi-quantitative scoring by two independent investigators. Multivariable Cox regression models were used to study the associations between miR-24-1-5p expression and prostate cancer recurrence. The prostate cancer patients had a median age of 65.0 years (range 47−75 years). The Cancer of the Prostate Risk Assessment Postsurgical Score, International Society of Urological Pathology grade group, and European Association of Urology Risk group were all significant prognostic factors for five-year recurrence-free survival (p < 0.001). Prostate cancer patients with a high miR-24-1-5p expression (≥1.57) in the tissue had a doubled risk of recurrence compared to patients with low expression (HR 1.99, 95% CI 1.13−3.51). Our study suggests that a high expression of miR-24-1-5p is associated with an increased risk of recurrence of prostate cancer after radical prostatectomy, which points to the potential diagnostic and therapeutic value of detecting miR-24-1-5p in prostate cancer cases.
Collapse
Affiliation(s)
- Einar Stikbakke
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Correspondence:
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Hege Sagstuen Haugnes
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Mona Irene Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
| | - Tore Knutsen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Urology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Martin Støyten
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Edward Giovannucci
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anne Elise Eggen
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Inger Thune
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Oncology, The Cancer Centre, Oslo University Hospital, 0424 Oslo, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
- Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
5
|
Lin Y, Qi X, Chen J, Shen B. Multivariate competing endogenous RNA network characterization for cancer MicroRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. PRECISION CLINICAL MEDICINE 2022; 5:pbac001. [PMID: 35821682 PMCID: PMC9267254 DOI: 10.1093/pcmedi/pbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNAs (miRNAs) are post-transcriptional regulators with potential as biomarkers for cancer management. Data-driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs and spongers. However, there are currently no general rules for ceRNA network-based biomarker prioritization. Methods and results In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability in the human long non-coding RNA (lncRNA)–miRNA–messenger RNAs (mRNA) network was comprehensively analyzed, and the single-line regulatory or competing mode among miRNAs, lncRNAs, and mRNAs was characterized and quantified as statistical evidence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of 12 miRNAs as putative biomarkers from the metastatic PCa-specific lncRNA–miRNA–mRNA network and nine of them have been previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments demonstrated the power of miR-26b-5p, miR-130a-3p, and miR-363-3p as novel candidates for predicting PCa metastasis. Moreover, PCa-associated pathways such as prostate cancer signaling, ERK/MAPK signaling, and TGF-β signaling were significantly enriched by targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis. Conclusions A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the identified miRNAs.
Collapse
Affiliation(s)
- Yuxin Lin
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jing Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
| |
Collapse
|
6
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
7
|
Weidle UH, Nopora A. MicroRNAs Involved in Small-cell Lung Cancer as Possible Agents for Treatment and Identification of New Targets. Cancer Genomics Proteomics 2021; 18:591-603. [PMID: 34479913 DOI: 10.21873/cgp.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer, a neuro-endocrine type of lung cancers, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
8
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
9
|
Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM, Donnem T, Lombardi APG, Kilvaer TK, Busund LT, Richardsen E. High expression of miR-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci Rep 2021; 11:13864. [PMID: 34226620 PMCID: PMC8257715 DOI: 10.1038/s41598-021-93208-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNA molecules, which are involved in the development of various malignancies, including prostate cancer (PCa). miR-17-5p is considered the most prominent member of the miR-17-92 cluster, with an essential regulatory function of fundamental cellular processes. In many malignancies, up-regulation of miR-17-5p is associated with worse outcome. In PCa, miR-17-5p has been reported to increase cell proliferation and the risk of metastasis. In this study, prostatectomy specimens from 535 patients were collected. Tissue microarrays were constructed and in situ hybridization was performed, followed by scoring of miR-17-5p expression on different tumor compartments. High expression of miR-17-5p in tumor epithelium was associated with biochemical failure (BF, p < 0.001) and clinical failure (CF, p = 0.019). In multivariate analyses, high miR-17-5p expression in tumor epithelial cells was an independent negative prognostic factor for BF (HR 1.87, 95% CI 1.32-2.67, p < 0.001). In vitro analyses confirmed association between overexpression of miR-17-5p and proliferation, migration and invasion in prostate cancer cell lines (PC3 and DU145). In conclusion, our study suggests that a high cancer cell expression of miR-17-5p was an independent negative prognostic factor in PCa.
Collapse
Affiliation(s)
- Maria Jenvin Stoen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, 5021, Bergen, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - A P G Lombardi
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway
| | - T K Kilvaer
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
10
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
11
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
12
|
Weidle UH, Brinkmann U, Auslaender S. microRNAs and Corresponding Targets Involved in Metastasis of Colorectal Cancer in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 17:453-468. [PMID: 32859626 DOI: 10.21873/cgp.20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
The high death toll of colorectal cancer patients is due to metastatic disease which is difficult to treat. The liver is the preferred site of metastasis, followed by the lungs and peritoneum. In order to identify new targets and new modalities of intervention we surveyed the literature for microRNAs (miRs) which modulate metastasis of colorectal cancer in preclinical in vivo models. We identified 12 up-regulated and 19 down-regulated miRs corresponding to the latter criterium. The vast majority (n=16) of identified miRs are involved in modulation of epithelial-mesenchymal transition (EMT). Other categories of metastasis-related miRs exhibit tumor- and metastasis-suppressing functions, modulation of signaling pathways, transmembrane receptors and a class of miRs, which interfere with targets which do not fit into these categories. Finally, we discuss the principles of miR inhibition and reconstitution of function, prospective clinical evaluation of with miR-related agents in the context of clinical evaluation in metastasis relevant settings.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
13
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
14
|
Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021; 18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The annual death toll for gastric cancer is in the range of 700,000 worldwide. Even in patients with early-stage gastric cancer recurrence within five years has been observed after surgical resection and following chemotherapy with therapy-resistant features. Therefore, the identification of new targets and treatment modalities for gastric cancer is of paramount importance. In this review we focus on the role of microRNAs with documented efficacy in preclinical xenograft models with respect to growth of human gastric cancer cells. We have identified 31 miRs (-10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100, -106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215, -221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p, -575, -589, -664a-3p) covering 26 different targets which promote growth of gastric cancer cells in vitro and in vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p and -589) additionally have an impact on metastasis. Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -589) have clinical impact on worse prognosis in patients.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| |
Collapse
|
15
|
Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ, Xue W. Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics 2021; 11:878-892. [PMID: 33391510 PMCID: PMC7738844 DOI: 10.7150/thno.49186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose: To identify extracellular vesicle (EV)-delivered microRNAs in the patient's serum as indicators for bone-metastatic prostate cancer. Methods: First, the profiling change of serum EV-delivered miRNAs in patients with either benign prostatic hyperplasia (BPH), non-bone metastatic prostate cancer or bone-metastatic prostate cancer was detected by microRNA deep sequencing assay and microRNA-chip array assay, respectively. Second, the candidates were further confirmed using TaqMan microRNA assay in two independent validation cohorts of total 176 patients with either BPH, non-bone metastatic prostate cancer or bone metastatic prostate cancer to seek the most valuable microRNA(s). Results: Through microRNA deep sequencing and microRNA-chip array, we found 4 prospective EV-delivered miRNAs including miR-181a-5p with significantly upregulated expression in bone metastatic groups than in non-bone metastatic prostate cancer groups (p < 0.05). In the validation cohorts, logistic regression analysis was performed to evaluate the diagnostic association of candidates with bone metastasis, which indicated that miR-181a-5p was significantly associated with bone metastatic prostate cancer. Furthermore, accuracy estimate of each candidate for the diagnosis of bone metastatic prostate cancer was quantified using the area under the receiver-operating characteristic curve (AUC), which identified miR-181a-5p as the best biomarker with the AUCs of 85.6% for diagnosis of prostate cancer and 73.8% for diagnosis of bone metastatic prostate cancer. Conclusion: EV-delivered miR-181a-5p from patient's serum is a promising diagnostic biomarker for bone metastatic prostate cancer.
Collapse
|
16
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
17
|
Sinha AA. Identification of metastatic cell nucleus in human prostate cancer by electron microscopy. Future Sci OA 2020; 6:FSO609. [PMID: 33235806 PMCID: PMC7668137 DOI: 10.2144/fsoa-2019-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
AIM Metastatic prostate cancer is responsible for a large proportion of deaths worldwide. The aim of this study was to identify metastatic cells and determine if stromal invasion by cancer cells differs from those during metastasis. METHODS & RESULTS Tissue biopsy/prostatectomy samples, visualized by transmission electron microscopy, identified that metastatic cells are a lineage of stem cells, which have dedifferentiated into cancerous columnar/cuboidal cells. These cells demonstrate nuclear plasticity; the loss of nuclear membranes and boundary between nucleus and cytoplasm; and the presence of electron dense molecules, which can readily pass through basement membranes and enter the capillary, ready for dissemination to metastatic sites. CONCLUSION This is the first study to demonstrate differences between invasive and metastatic cell types.
Collapse
Affiliation(s)
- Akhouri A Sinha
- Research Service, Minneapolis Veterans Affairs Healthcare System, Minneapolis, MN 55417, USA
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
19
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
20
|
Dai X, Huang R, Hu S, Zhou Y, Sun X, Gui P, Yu Z, Zhou P. A novel miR-0308-3p revealed by miRNA-seq of HBV-positive hepatocellular carcinoma suppresses cell proliferation and promotes G1/S arrest by targeting double CDK6/Cyclin D1 genes. Cell Biosci 2020; 10:24. [PMID: 32128112 PMCID: PMC7047384 DOI: 10.1186/s13578-020-00382-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Persistent infection with hepatitis B virus (HBV) accounts for the majority of hepatocellular carcinoma (HCC), but the molecular mechanisms underlying liver carcinogenesis are still not completely understood. Increasing evidence demonstrates that microRNAs (miRNAs) play significant functional roles in virus–host interactions. The aim of this study was to explore differentially expressed miRNA profiles and investigate the molecular mechanism of miR-0308-3p in HBV-positive HCC carcinogenesis. Methods High-throughput sequencing was used to detect novel miRNAs in three samples of HBV-positive HCC tissue compared to matched HBV-negative HCC tissue. The Cancer Genome Atlas (TCGA) database was used to mine miRNAs related to HBV-positive HCC. Bioinformatics analyses were conducted to predict the miRNAs’ possible biological and pathway regulatory functions. Quantitative polymerase chain reaction (qPCR) was then applied to evaluate the expression levels of randomly selected miRNAs. CCK-8 was used to measure cell proliferation and cell cycles were analyzed using flow cytometry. A dual luciferase reporter gene assay was used to confirm the downstream targets of miR-0308-3p. Results In total, there were 34 overlapping miRNAs in both our miRNA-seq data and the TCGA database. We found two overlapping miRNAs in both the HBV-positive HCC samples and the TCGA database, and 205 novel pre-miRNA sequences were predicted. miR-522 and miR-523 were markedly overexpressed in HBV-positive HCC and were associated with a significantly poorer long-term prognosis (miR-522, HR 2.19, 95% CI 1.33–3.6, p = 0.0015; miR-523HR 1.5, 95% CI 1–2.44, p = 0.0047). Of note, we found that the novel miR-0308-3p was markedly downregulated in HBV-positive HCC samples and HCC cancer cell lines compared with HBV-negative HCC samples and adjacent normal hepatic tissue. Moreover, elevated expression of miR-0308-3p was found to inhibit proliferation of cancer cells by promoting G1/S cell cycle arrest but did not influence the apoptosis of cancer cells. A dual luciferase reporter activity assay identified that miR-0308-3p acted directly on the target sequence of the CDK6 and Cyclin D1 mRNA 3ʹUTR to suppress CDK6 and Cyclin D1 expression. Conclusions MiR-0308-3p upregulation dramatically suppressed HCC cell proliferation and induced G1/S cell cycle arrest by directly targeting CDK6/Cyclin D1. These findings reveal a novel molecular mechanism for activation of G1/S arrest in HCC and may prove clinically useful for developing new therapeutic targets.
Collapse
Affiliation(s)
- Xiaoming Dai
- 1The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Ruixue Huang
- 2Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 China
| | - Sai Hu
- 3Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Yao Zhou
- 2Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 China
| | - Xiaoya Sun
- 3Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China
| | - Pucheng Gui
- 1The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Zijian Yu
- 1The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Pingkun Zhou
- 3Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou, 511436 People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850 People's Republic of China
| |
Collapse
|
21
|
Zenner ML, Baumann B, Nonn L. Oncogenic and tumor-suppressive microRNAs in prostate cancer. ACTA ACUST UNITED AC 2020; 10:50-59. [PMID: 33043165 DOI: 10.1016/j.coemr.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs are known to be dysregulated in prostate cancer. These small noncoding RNAs can function as biomarkers and are involved in the biology of prostate cancer. The canonical mechanism for microRNAs is post-transcription regulation of gene expression via binding to the 3' untranslated region of mRNAs, resulting in RNA degradation and/or translational repression. Thus, oncogenic microRNAs, also known as oncomiRs, often have high expression in prostate cancer and target the mRNAs of tumor suppressors. Conversely, tumor-suppressive microRNAs have reduced expression in cancer and typically target oncogenes. Some microRNAs function outside the classical mechanism and serve to stabilize their mRNA targets. Herein, we review contemporary studies that demonstrate oncogenic and tumor-suppressive activity of microRNAs in prostate cancer.
Collapse
Affiliation(s)
- Morgan L Zenner
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States.,University of Illinois Cancer Center, Chicago, IL, 60612, United States
| |
Collapse
|
22
|
Guo L, Lin M, Cheng Z, Chen Y, Huang Y, Xu K. Identification of key genes and multiple molecular pathways of metastatic process in prostate cancer. PeerJ 2019; 7:e7899. [PMID: 31637138 PMCID: PMC6800981 DOI: 10.7717/peerj.7899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is well known as the most adverse outcome and the major cause of mortality in cancer patients, including prostate cancer (PCa). There are no credible predictors, to this day, that can reflect the metastatic ability of localized PCa. In the present study, we firstly identified the differentially expressed genes (DEGs) and molecular pathways involved in the metastaic process of PCa by comparing gene expressions of metastaic PCa with localized PCa directly, with the purpose of identifying potential markers or therapeutic targets. Methods The gene expression profiles (GSE6919 and GSE32269) were downloaded from the Gene Expression Omnibus database, which contained 141 tissue samples, including 87 primary localized PCa samples and 54 metastaic PCa samples. After data processing, DEGs were identified by R language using the Student’s t-test adjusted via the Beniamini–Hochberg method. Subsequently, the gene ontology functional and pathway enrichment analyses of DEGs were performed and the protein–protein interaction network was constructed. Hub genes were identified using the plug-in cytoHubba in Cytoscape software by MCC and degree. Furthermore, validation and prognostic significance analysis of the hub genes were performed by UALCAN and gene expression profiling interactive analysis (GEPIA). Results A total of 90 DEGs were identified between localized and metastaic PCa, which consisted of 47 upregulated and 43 downregulated genes. The enriched functions and pathways of the DEGs include catabolic process, cell cycle, response to steroid hormone, extracellular matrix (ECM)-receptor interaction and vascular smooth muscle contraction. A total of 10 genes were identified as hub genes and biological process analysis of hub genes showed that cell cycle phase, cell division, and mitotic cell cycle process were mainly enriched. The expression of hub genes were confirmed in metastaic PCa when compared with localized PCa tissues by The Cancer Genome Atlas database. Moreover, the disease-free survival analysis of hub genes revealed that these genes may play an important role in invasion, progression or recurrence. Therefore, these hub genes might be the key genes contributed to tumor progression or metastasis in PCa and provide candidate therapeutic targets for PCa. Conclusions The present study identified some DEGs between localized and metastaic PCa tissue samples. These key genes might be potential therapeutic targets and biomarkers for the metastaic process of PCa.
Collapse
Affiliation(s)
- Lihuang Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingyue Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenbo Cheng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yi Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
23
|
Michalek J, Brychtova S, Pink R, Dvorak Z. Prognostic and predictive markers for perineural and bone invasion of oral squamous cell carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:302-308. [PMID: 31435075 DOI: 10.5507/bp.2019.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a growing problem worldwide. Several biological and molecular criteria have been established for making a prognosis of OSCC. One of the most important factors affecting the risk of tumor recurrence and overall prognosis is perineural invasion and bone invasion. Perineural invasion is defined as a tumor spreading and the ability of tumor cells to penetrate around or through the nerve tissue. Perineural invasion can cause the tumor to spread to distant areas from the primary tumor location. One possible explanation for this is the formation of microenvironment in the perineural space which may contain cellular factors that act on both nerve tissue and some types of tumor tissues. Bone invasion by OSCC has major implications for tumor staging, choice of treatment, outcome and quality of life. Oral SCCs invade the mandibular or maxillary bone through an erosive, infiltrative or mixed pattern that correlates with clinical behavior. Bone resorption by osteoclasts is an important step in the process of bone invasion by oral SCCs. Some cytokines (e.g. TNFα and PTHrP) lead to receptor activator of NF-κB ligand (RANKL) expression or osteoprotegerin (OPG) suppression in oral SCC cells and in cancer stromal cells to induce osteoclastogenesis. Oral SCCs provide a suitable microenvironment for osteoclastogenesis to regulate the balance of RANKL and OPG. A more molecular-based clinical staging and tailor-made therapy would benefit patients with bone invasion by OSCC.
Collapse
Affiliation(s)
- Jaroslav Michalek
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Svetlana Brychtova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Richard Pink
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc, Czech Republic
| | - Zdenek Dvorak
- Department of Plastic and Aesthetic Surgery of St. Anne`s University Hospital and Faculty of Medicine, Masaryk University Brno, Czech Republic
| |
Collapse
|
24
|
Weidle UH, Birzele F, Nopora A. MicroRNAs as Potential Targets for Therapeutic Intervention With Metastasis of Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2019; 16:99-119. [PMID: 30850362 PMCID: PMC6489690 DOI: 10.21873/cgp.20116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
The death toll of non-small cell lung cancer (NSCLC) patients is primarily due to metastases, which are poorly amenable to therapeutic intervention. In this review we focus on miRs associated with metastasis of NSCLC as potential new targets for anti-metastatic therapy. We discuss miRs validated as therapeutic targets by in vitro data, identification of target(s) and pathway(s) and in vivo efficacy data in at least one clinically-relevant metastasis-related model. A few of the discussed miRs correlate with the clinical status of NSCLC patients. Using miRs as therapeutic agents has the advantage that targeting a single miR can potentially interfere with several metastatic pathways. Depending on their mode of action, the corresponding miRs can be up- or down-regulated compared to normal matching tissues. Here, we describe therapeutic approaches for reconstitution therapy and miR inhibition, general principles of anti-metastatic therapy as well as current technical pitfalls.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|